Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations

The main purpose of this paper is to study the oscillatory properties of solutions of the third-order quasi-linear delay differential equation ℒy(t)+f(t)yβ(σ(t))=0{\cal L}y(t) + f(t){y^\beta }(\sigma (t)) = 0 where ℒy(t) = (b(t)(a(t)(y0(t)) )0)0 is a semi-canonical differential operator. The main id...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saranya K., Piramanantham V., Thandapani E.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/11d05cd83e444c2980c8870cdf52e242
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The main purpose of this paper is to study the oscillatory properties of solutions of the third-order quasi-linear delay differential equation ℒy(t)+f(t)yβ(σ(t))=0{\cal L}y(t) + f(t){y^\beta }(\sigma (t)) = 0 where ℒy(t) = (b(t)(a(t)(y0(t)) )0)0 is a semi-canonical differential operator. The main idea is to transform the semi-canonical operator into canonical form and then obtain new oscillation results for the studied equation. Examples are provided to illustrate the importance of the main results.