Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations

The main purpose of this paper is to study the oscillatory properties of solutions of the third-order quasi-linear delay differential equation ℒy(t)+f(t)yβ(σ(t))=0{\cal L}y(t) + f(t){y^\beta }(\sigma (t)) = 0 where ℒy(t) = (b(t)(a(t)(y0(t)) )0)0 is a semi-canonical differential operator. The main id...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saranya K., Piramanantham V., Thandapani E.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/11d05cd83e444c2980c8870cdf52e242
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:11d05cd83e444c2980c8870cdf52e242
record_format dspace
spelling oai:doaj.org-article:11d05cd83e444c2980c8870cdf52e2422021-12-05T14:10:56ZOscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations2353-062610.1515/msds-2020-0135https://doaj.org/article/11d05cd83e444c2980c8870cdf52e2422021-11-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0135https://doaj.org/toc/2353-0626The main purpose of this paper is to study the oscillatory properties of solutions of the third-order quasi-linear delay differential equation ℒy(t)+f(t)yβ(σ(t))=0{\cal L}y(t) + f(t){y^\beta }(\sigma (t)) = 0 where ℒy(t) = (b(t)(a(t)(y0(t)) )0)0 is a semi-canonical differential operator. The main idea is to transform the semi-canonical operator into canonical form and then obtain new oscillation results for the studied equation. Examples are provided to illustrate the importance of the main results.Saranya K.Piramanantham V.Thandapani E.De Gruyterarticlesemi- canonicalthird-orderdelay differential equationsoscillation34c1034k11MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 228-238 (2021)
institution DOAJ
collection DOAJ
language EN
topic semi- canonical
third-order
delay differential equations
oscillation
34c10
34k11
Mathematics
QA1-939
spellingShingle semi- canonical
third-order
delay differential equations
oscillation
34c10
34k11
Mathematics
QA1-939
Saranya K.
Piramanantham V.
Thandapani E.
Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations
description The main purpose of this paper is to study the oscillatory properties of solutions of the third-order quasi-linear delay differential equation ℒy(t)+f(t)yβ(σ(t))=0{\cal L}y(t) + f(t){y^\beta }(\sigma (t)) = 0 where ℒy(t) = (b(t)(a(t)(y0(t)) )0)0 is a semi-canonical differential operator. The main idea is to transform the semi-canonical operator into canonical form and then obtain new oscillation results for the studied equation. Examples are provided to illustrate the importance of the main results.
format article
author Saranya K.
Piramanantham V.
Thandapani E.
author_facet Saranya K.
Piramanantham V.
Thandapani E.
author_sort Saranya K.
title Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations
title_short Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations
title_full Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations
title_fullStr Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations
title_full_unstemmed Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations
title_sort oscillation results for third-order semi-canonical quasi-linear delay differential equations
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/11d05cd83e444c2980c8870cdf52e242
work_keys_str_mv AT saranyak oscillationresultsforthirdordersemicanonicalquasilineardelaydifferentialequations
AT piramananthamv oscillationresultsforthirdordersemicanonicalquasilineardelaydifferentialequations
AT thandapanie oscillationresultsforthirdordersemicanonicalquasilineardelaydifferentialequations
_version_ 1718371584032374784