Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations
The main purpose of this paper is to study the oscillatory properties of solutions of the third-order quasi-linear delay differential equation ℒy(t)+f(t)yβ(σ(t))=0{\cal L}y(t) + f(t){y^\beta }(\sigma (t)) = 0 where ℒy(t) = (b(t)(a(t)(y0(t)) )0)0 is a semi-canonical differential operator. The main id...
Guardado en:
Autores principales: | Saranya K., Piramanantham V., Thandapani E. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/11d05cd83e444c2980c8870cdf52e242 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Oscillation of solutions to a generalized forced nonlinear conformable fractional differential equation
por: Ogunbanjo,A. M., et al.
Publicado: (2019) -
Third-order differential equations with three-point boundary conditions
por: Cabada Alberto, et al.
Publicado: (2021) -
Delay-Dependent Stability Conditions for Non-autonomous Functional Differential Equations with Several Delays in a Banach Space
por: Gil’ Michael
Publicado: (2021) -
Oscillation results for a certain class of fourth-order nonlinear delay differential equations
por: Moaaz,Osama, et al.
Publicado: (2021) -
Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
por: Norouzi Fatemeh, et al.
Publicado: (2021)