Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep-machine learning approach
Abstract Background Deep learning is an active bioinformatics artificial intelligence field that is useful in solving many biological problems, including predicting altered epigenetics such as DNA methylation regions. Deep learning (DL) can learn an informative representation that addresses the need...
Guardado en:
Autores principales: | Pegah Mavaie, Lawrence Holder, Daniel Beck, Michael K. Skinner |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/11d9440dcac14dd09160739ebfdd289e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of a Machine Learning Classifier for Brain Tumors Diagnosis Based on DNA Methylation Profile
por: Yuxing Chen, et al.
Publicado: (2021) -
Prediction of central venous catheter-associated deep venous thrombosis in pediatric critical care settings
por: Haomin Li, et al.
Publicado: (2021) -
An Efficient Covid19 Epidemic Analysis and Prediction Model Using Machine Learning Algorithms
por: A Lakshmanarao, et al.
Publicado: (2021) -
Application of machine learning to predict the occurrence of arrhythmia after acute myocardial infarction
por: Suhuai Wang, et al.
Publicado: (2021) -
Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation
por: Cai Wu, et al.
Publicado: (2021)