Assessment of durum wheat (Triticum durum Desf.) genotypes based on their agro-physiological characteristics and stress tolerance indices

<p>The present study aimed to investigate the extent of variability and relationships between grain yield and morpho-physiological durum wheat traits. Sufficient variability was observed for most characters. Based on stress indices, either widely or specifically, adapted lines were identified....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Radhia MEKAOUSSI, Abou-bakr RABTI, Zine El Abidine FELLAHI, Abderrahmane HANNACHI, Amar BENMAHAMMED, Hamenna BOUZERZOUR
Formato: article
Lenguaje:EN
SL
Publicado: University of Ljubljana, Biotechnical Faculty 2021
Materias:
S
Acceso en línea:https://doaj.org/article/1203e35c45424dafa01979e484347c3a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<p>The present study aimed to investigate the extent of variability and relationships between grain yield and morpho-physiological durum wheat traits. Sufficient variability was observed for most characters. Based on stress indices, either widely or specifically, adapted lines were identified. Path analysis pointed out to above ground biomass, harvest index, spike fertility and spike number as yield determinants, suggesting that these traits are of interest in the breeding program. The measured traits were classified within 6 principal components accounting for 79.45 % of the total variation. Breeding lines dispersed along first principal component exhibited substantial differences in performance and stress tolerance abilities. Cluster C3 lines were high yielding and stress tolerant. From this cluster, lines L24 and L14 were scored as the best for 7 and 5 traits out of 17 characters, respectively. Both lines are proposed for release and as parents in crosses to take advantage of their desirable characteristics. The results indicated that physiological traits were unrelated to each other and to morphological traits making difficult the concomitant selection for yield and stress tolerance driven by these traits. Complexes crosses, between parents carefully chosen for these specific characteristics, are necessary to enhance favorable genetic linkage and to generate new basic segregating populations with high genetic variability for these traits.</p>