Predicting adsorption ability of adsorbents at arbitrary sites for pollutants using deep transfer learning
Abstract Accurately evaluating the adsorption ability of adsorbents for heavy metal ions (HMIs) and organic pollutants in water is critical for the design and preparation of emerging highly efficient adsorbents. However, predicting adsorption capabilities of adsorbents at arbitrary sites is challeng...
Enregistré dans:
Auteurs principaux: | Zhilong Wang, Haikuo Zhang, Jiahao Ren, Xirong Lin, Tianli Han, Jinyun Liu, Jinjin Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1214c93ce21c44aa8679947d7f0c4742 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Adsorption space for microporous polymers with diverse adsorbate species
par: Dylan M. Anstine, et autres
Publié: (2021) -
Publisher Correction: Adsorption space for microporous polymers with diverse adsorbate species
par: Dylan M. Anstine, et autres
Publié: (2021) -
Unsupervised discovery of thin-film photovoltaic materials from unlabeled data
par: Zhilong Wang, et autres
Publié: (2021) -
A high-throughput framework for determining adsorption energies on solid surfaces
par: Joseph H. Montoya, et autres
Publié: (2017) -
A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
par: Osman Mamun, et autres
Publié: (2020)