Predicting adsorption ability of adsorbents at arbitrary sites for pollutants using deep transfer learning
Abstract Accurately evaluating the adsorption ability of adsorbents for heavy metal ions (HMIs) and organic pollutants in water is critical for the design and preparation of emerging highly efficient adsorbents. However, predicting adsorption capabilities of adsorbents at arbitrary sites is challeng...
Guardado en:
Autores principales: | Zhilong Wang, Haikuo Zhang, Jiahao Ren, Xirong Lin, Tianli Han, Jinyun Liu, Jinjin Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1214c93ce21c44aa8679947d7f0c4742 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adsorption space for microporous polymers with diverse adsorbate species
por: Dylan M. Anstine, et al.
Publicado: (2021) -
Publisher Correction: Adsorption space for microporous polymers with diverse adsorbate species
por: Dylan M. Anstine, et al.
Publicado: (2021) -
Unsupervised discovery of thin-film photovoltaic materials from unlabeled data
por: Zhilong Wang, et al.
Publicado: (2021) -
A high-throughput framework for determining adsorption energies on solid surfaces
por: Joseph H. Montoya, et al.
Publicado: (2017) -
A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
por: Osman Mamun, et al.
Publicado: (2020)