Virtual and Augmented Reality Direct Ophthalmoscopy Tool: A Comparison between Interactions Methods
Direct ophthalmoscopy (DO) is a medical procedure whereby a health professional, using a direct ophthalmoscope, examines the eye fundus. DO skills are in decline due to the use of interactive diagnostic equipment and insufficient practice with the direct ophthalmoscope. To address the loss of DO ski...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1220d243eca542debc4b7c4d2a4a4806 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Direct ophthalmoscopy (DO) is a medical procedure whereby a health professional, using a direct ophthalmoscope, examines the eye fundus. DO skills are in decline due to the use of interactive diagnostic equipment and insufficient practice with the direct ophthalmoscope. To address the loss of DO skills, physical and computer-based simulators have been developed to offer additional training. Among the computer-based simulations, virtual and augmented reality (VR and AR, respectively) allow simulated immersive and interactive scenarios with eye fundus conditions that are difficult to replicate in the classroom. VR and AR require employing 3D user interfaces (3DUIs) to perform the virtual eye examination. Using a combination of a between-subjects and within-subjects paradigm with two groups of five participants, this paper builds upon a previous preliminary usability study that compared the use of the HTC Vive controller, the Valve Index controller, and the Microsoft HoloLens 1 hand gesticulation interaction methods when performing a virtual direct ophthalmoscopy eye examination. The work described in this paper extends our prior work by considering the interactions with the Oculus Quest controller and Oculus Quest hand-tracking system to perform a virtual direct ophthalmoscopy eye examination while allowing us to compare these methods without our prior interaction techniques. Ultimately, this helps us develop a greater understanding of usability effects for virtual DO examinations and virtual reality in general. Although the number of participants was limited, n = 5 for Stage 1 (including the HTC Vive controller, the Valve Index controller, and the Microsoft HoloLens hand gesticulations), and n = 13 for Stage 2 (including the Oculus Quest controller and the Oculus Quest hand tracking), given the COVID-19 restrictions, our initial results comparing VR and AR 3D user interactions for direct ophthalmoscopy are consistent with our previous preliminary study where the physical controllers resulted in higher usability scores, while the Oculus Quest’s more accurate hand motion capture resulted in higher usability when compared to the Microsoft HoloLens hand gesticulation. |
---|