In-Season Body Composition Effects in Professional Women Soccer Players

This study aimed to analyze anthropometric and body composition effects in professional soccer women players across the early and mid-competitive 2019/20 season. Seventeen players (age, height, body mass, and body mass index of 22.7 ± 6.3 years, 167.5 ± 5.6 cm, 60.7 ± 6.6 kg and 21.6 ± 0.2 kg/m<s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rafael Oliveira, Ruben Francisco, Renato Fernandes, Alexandre Martins, Hadi Nobari, Filipe Manuel Clemente, João Paulo Brito
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
R
Acceso en línea:https://doaj.org/article/12215131c5024703b9ce7cad0e2edd05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This study aimed to analyze anthropometric and body composition effects in professional soccer women players across the early and mid-competitive 2019/20 season. Seventeen players (age, height, body mass, and body mass index of 22.7 ± 6.3 years, 167.5 ± 5.6 cm, 60.7 ± 6.6 kg and 21.6 ± 0.2 kg/m<sup>2</sup>) from a Portuguese BPI League team participated in this study. The participants completed ≥80% of 57 training sessions and 13 matches. They were assessed at three points (before the start of the season (A1), after two months (A2), and after four months (A3)) using the following variables: body fat mass (BFM), soft lean mass (SLM), fat-free mass (FFM), intracellular water (ICW), extracellular water (ECW), total body water (TBW), and phase angle (PhA, 50 Khz), through InBody S10. Nutritional intake was determined through a questionnaire. Repeated measures ANCOVA and effect sizes (ES) were used with <i>p</i> < 0.05. The main results occurred between A1 and A2 for BFM (−21.7%, ES = 1.58), SLM (3.7%, ES = 1.24), FFM (4%, ES = 1.34), ICW (4.2%, ES = 1.41), TBW (3.7%, ES = 1.04). Furthermore, there were significant results between A1 and A3 for FFM (4.8%, ES = 1.51), ICW (5%, ES = 1.68), and PhA (10.4%, ES = 6.64). The results showed that the water parameters improved over time, which led to healthy hydration statuses. The training load structure provided sufficient stimulus for appropriate physical fitness development, without causing negative disturbances in the water compartments.