Node and edge nonlinear eigenvector centrality for hypergraphs

Evaluating the importance of nodes and hyperedges in hypergraphs is relevant to link detection, link prediction and matrix completion. Here, the authors define a family of nonlinear eigenvector centrality measures for both edges and nodes in hypergraphs, propose an algorithm to calculate them, and i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Francesco Tudisco, Desmond J. Higham
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/1223cb91ad414a9d8ddc81a142c1d18a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1223cb91ad414a9d8ddc81a142c1d18a
record_format dspace
spelling oai:doaj.org-article:1223cb91ad414a9d8ddc81a142c1d18a2021-12-02T15:26:51ZNode and edge nonlinear eigenvector centrality for hypergraphs10.1038/s42005-021-00704-22399-3650https://doaj.org/article/1223cb91ad414a9d8ddc81a142c1d18a2021-09-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00704-2https://doaj.org/toc/2399-3650Evaluating the importance of nodes and hyperedges in hypergraphs is relevant to link detection, link prediction and matrix completion. Here, the authors define a family of nonlinear eigenvector centrality measures for both edges and nodes in hypergraphs, propose an algorithm to calculate them, and illustrate their application on real-world data sets.Francesco TudiscoDesmond J. HighamNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Francesco Tudisco
Desmond J. Higham
Node and edge nonlinear eigenvector centrality for hypergraphs
description Evaluating the importance of nodes and hyperedges in hypergraphs is relevant to link detection, link prediction and matrix completion. Here, the authors define a family of nonlinear eigenvector centrality measures for both edges and nodes in hypergraphs, propose an algorithm to calculate them, and illustrate their application on real-world data sets.
format article
author Francesco Tudisco
Desmond J. Higham
author_facet Francesco Tudisco
Desmond J. Higham
author_sort Francesco Tudisco
title Node and edge nonlinear eigenvector centrality for hypergraphs
title_short Node and edge nonlinear eigenvector centrality for hypergraphs
title_full Node and edge nonlinear eigenvector centrality for hypergraphs
title_fullStr Node and edge nonlinear eigenvector centrality for hypergraphs
title_full_unstemmed Node and edge nonlinear eigenvector centrality for hypergraphs
title_sort node and edge nonlinear eigenvector centrality for hypergraphs
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1223cb91ad414a9d8ddc81a142c1d18a
work_keys_str_mv AT francescotudisco nodeandedgenonlineareigenvectorcentralityforhypergraphs
AT desmondjhigham nodeandedgenonlineareigenvectorcentralityforhypergraphs
_version_ 1718387186175311872