Node and edge nonlinear eigenvector centrality for hypergraphs
Evaluating the importance of nodes and hyperedges in hypergraphs is relevant to link detection, link prediction and matrix completion. Here, the authors define a family of nonlinear eigenvector centrality measures for both edges and nodes in hypergraphs, propose an algorithm to calculate them, and i...
Guardado en:
Autores principales: | Francesco Tudisco, Desmond J. Higham |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1223cb91ad414a9d8ddc81a142c1d18a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021) -
Hypergraph reconstruction from network data
por: Jean-Gabriel Young, et al.
Publicado: (2021) -
Phase transitions and stability of dynamical processes on hypergraphs
por: Guilherme Ferraz de Arruda, et al.
Publicado: (2021) -
Detecting informative higher-order interactions in statistically validated hypergraphs
por: Federico Musciotto, et al.
Publicado: (2021) -
How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs
por: Anton Eriksson, et al.
Publicado: (2021)