An electrostatics method for converting a time-series into a weighted complex network
Abstract This paper proposes a new method for converting a time-series into a weighted graph (complex network), which builds on electrostatics in physics. The proposed method conceptualizes a time-series as a series of stationary, electrically charged particles, on which Coulomb-like forces can be c...
Guardado en:
Autores principales: | Dimitrios Tsiotas, Lykourgos Magafas, Panos Argyrakis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/124abb98aafa4a008be459192d2e0d3c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Incorporation of causality structures to complex network analysis of time-varying behaviour of multivariate time series
por: Leo Carlos-Sandberg, et al.
Publicado: (2021) -
A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
por: Andrei Velichko, et al.
Publicado: (2021) -
Duality between time series and networks.
por: Andriana S L O Campanharo, et al.
Publicado: (2011) -
Quantifying memory in complex physiological time-series.
por: Amir H Shirazi, et al.
Publicado: (2013) -
Generative adversarial network based on chaotic time series
por: Makoto Naruse, et al.
Publicado: (2019)