A Comparative Study of Linear, Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining
Non-traditional machining (NTM) has gained significant attention in the last decade due to its ability to machine conventionally hard-to-machine materials. However, NTMs suffer from several disadvantages such as higher initial cost, lower material removal rate, more power consumption, etc. NTMs invo...
Guardado en:
Autores principales: | G. Shanmugasundar, M. Vanitha, Robert Čep, Vikas Kumar, Kanak Kalita, M. Ramachandran |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/125d9201782f4d0ca8cb9c758b6003b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms
por: Halima EL Hamdaoui, et al.
Publicado: (2021) -
Warped Bayesian linear regression for normative modelling of big data
por: Charlotte J. Fraza, et al.
Publicado: (2021) -
Comparison of Regression and Neural Networks Models to Estimate Solar Radiation
por: Bocco,Mónica, et al.
Publicado: (2010) -
Causality inference of linearly correlated variables: The statistical simulation and regression method
por: WenJun Zhang
Publicado: (2021) -
A Remote Sensing Approach for Surface Urban Heat Island Modeling in a Tropical Colombian City Using Regression Analysis and Machine Learning Algorithms
por: Julián Garzón, et al.
Publicado: (2021)