Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

Quantum metrology investigates the improvement given to precision measurements by exploiting quantum mechanics, but it has been mostly limited to systems with static Hamiltonians. Here the authors study it in the general case of time-varying Hamiltonians, showing that optimizing the quantum Fisher i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shengshi Pang, Andrew N. Jordan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/12746a0877644f9fb831e1569d208fdc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:12746a0877644f9fb831e1569d208fdc
record_format dspace
spelling oai:doaj.org-article:12746a0877644f9fb831e1569d208fdc2021-12-02T14:40:33ZOptimal adaptive control for quantum metrology with time-dependent Hamiltonians10.1038/ncomms146952041-1723https://doaj.org/article/12746a0877644f9fb831e1569d208fdc2017-03-01T00:00:00Zhttps://doi.org/10.1038/ncomms14695https://doaj.org/toc/2041-1723Quantum metrology investigates the improvement given to precision measurements by exploiting quantum mechanics, but it has been mostly limited to systems with static Hamiltonians. Here the authors study it in the general case of time-varying Hamiltonians, showing that optimizing the quantum Fisher information via quantum control provides an advantage.Shengshi PangAndrew N. JordanNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shengshi Pang
Andrew N. Jordan
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
description Quantum metrology investigates the improvement given to precision measurements by exploiting quantum mechanics, but it has been mostly limited to systems with static Hamiltonians. Here the authors study it in the general case of time-varying Hamiltonians, showing that optimizing the quantum Fisher information via quantum control provides an advantage.
format article
author Shengshi Pang
Andrew N. Jordan
author_facet Shengshi Pang
Andrew N. Jordan
author_sort Shengshi Pang
title Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
title_short Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
title_full Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
title_fullStr Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
title_full_unstemmed Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
title_sort optimal adaptive control for quantum metrology with time-dependent hamiltonians
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/12746a0877644f9fb831e1569d208fdc
work_keys_str_mv AT shengshipang optimaladaptivecontrolforquantummetrologywithtimedependenthamiltonians
AT andrewnjordan optimaladaptivecontrolforquantummetrologywithtimedependenthamiltonians
_version_ 1718390217880109056