Making brain–machine interfaces robust to future neural variability

Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David Sussillo, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, Krishna V. Shenoy
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/1278009750394d229b95e0a81331168b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1278009750394d229b95e0a81331168b
record_format dspace
spelling oai:doaj.org-article:1278009750394d229b95e0a81331168b2021-12-02T16:57:18ZMaking brain–machine interfaces robust to future neural variability10.1038/ncomms137492041-1723https://doaj.org/article/1278009750394d229b95e0a81331168b2016-12-01T00:00:00Zhttps://doi.org/10.1038/ncomms13749https://doaj.org/toc/2041-1723Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signals.David SussilloSergey D. StaviskyJonathan C. KaoStephen I. RyuKrishna V. ShenoyNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-13 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
David Sussillo
Sergey D. Stavisky
Jonathan C. Kao
Stephen I. Ryu
Krishna V. Shenoy
Making brain–machine interfaces robust to future neural variability
description Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signals.
format article
author David Sussillo
Sergey D. Stavisky
Jonathan C. Kao
Stephen I. Ryu
Krishna V. Shenoy
author_facet David Sussillo
Sergey D. Stavisky
Jonathan C. Kao
Stephen I. Ryu
Krishna V. Shenoy
author_sort David Sussillo
title Making brain–machine interfaces robust to future neural variability
title_short Making brain–machine interfaces robust to future neural variability
title_full Making brain–machine interfaces robust to future neural variability
title_fullStr Making brain–machine interfaces robust to future neural variability
title_full_unstemmed Making brain–machine interfaces robust to future neural variability
title_sort making brain–machine interfaces robust to future neural variability
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/1278009750394d229b95e0a81331168b
work_keys_str_mv AT davidsussillo makingbrainmachineinterfacesrobusttofutureneuralvariability
AT sergeydstavisky makingbrainmachineinterfacesrobusttofutureneuralvariability
AT jonathanckao makingbrainmachineinterfacesrobusttofutureneuralvariability
AT stepheniryu makingbrainmachineinterfacesrobusttofutureneuralvariability
AT krishnavshenoy makingbrainmachineinterfacesrobusttofutureneuralvariability
_version_ 1718382547645235200