Making brain–machine interfaces robust to future neural variability
Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signal...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1278009750394d229b95e0a81331168b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1278009750394d229b95e0a81331168b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1278009750394d229b95e0a81331168b2021-12-02T16:57:18ZMaking brain–machine interfaces robust to future neural variability10.1038/ncomms137492041-1723https://doaj.org/article/1278009750394d229b95e0a81331168b2016-12-01T00:00:00Zhttps://doi.org/10.1038/ncomms13749https://doaj.org/toc/2041-1723Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signals.David SussilloSergey D. StaviskyJonathan C. KaoStephen I. RyuKrishna V. ShenoyNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-13 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q David Sussillo Sergey D. Stavisky Jonathan C. Kao Stephen I. Ryu Krishna V. Shenoy Making brain–machine interfaces robust to future neural variability |
description |
Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signals. |
format |
article |
author |
David Sussillo Sergey D. Stavisky Jonathan C. Kao Stephen I. Ryu Krishna V. Shenoy |
author_facet |
David Sussillo Sergey D. Stavisky Jonathan C. Kao Stephen I. Ryu Krishna V. Shenoy |
author_sort |
David Sussillo |
title |
Making brain–machine interfaces robust to future neural variability |
title_short |
Making brain–machine interfaces robust to future neural variability |
title_full |
Making brain–machine interfaces robust to future neural variability |
title_fullStr |
Making brain–machine interfaces robust to future neural variability |
title_full_unstemmed |
Making brain–machine interfaces robust to future neural variability |
title_sort |
making brain–machine interfaces robust to future neural variability |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/1278009750394d229b95e0a81331168b |
work_keys_str_mv |
AT davidsussillo makingbrainmachineinterfacesrobusttofutureneuralvariability AT sergeydstavisky makingbrainmachineinterfacesrobusttofutureneuralvariability AT jonathanckao makingbrainmachineinterfacesrobusttofutureneuralvariability AT stepheniryu makingbrainmachineinterfacesrobusttofutureneuralvariability AT krishnavshenoy makingbrainmachineinterfacesrobusttofutureneuralvariability |
_version_ |
1718382547645235200 |