Making brain–machine interfaces robust to future neural variability
Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signal...
Enregistré dans:
Auteurs principaux: | David Sussillo, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, Krishna V. Shenoy |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1278009750394d229b95e0a81331168b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Correction: Corrigendum: Making brain-machine interfaces robust to future neural variability
par: David Sussillo, et autres
Publié: (2017) -
Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces
par: Jonathan C. Kao, et autres
Publié: (2017) -
Measurement, manipulation and modeling of brain-wide neural population dynamics
par: Krishna V. Shenoy, et autres
Publié: (2021) -
Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces
par: Zhengwu Liu, et autres
Publié: (2020) -
Electrode materials for brain–machine interface: A review
par: Nan Wu, et autres
Publié: (2021)