Making brain–machine interfaces robust to future neural variability

Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signal...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: David Sussillo, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, Krishna V. Shenoy
Format: article
Langue:EN
Publié: Nature Portfolio 2016
Sujets:
Q
Accès en ligne:https://doaj.org/article/1278009750394d229b95e0a81331168b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires