Making brain–machine interfaces robust to future neural variability

Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David Sussillo, Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, Krishna V. Shenoy
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/1278009750394d229b95e0a81331168b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!