Binarized Neural Network with Silicon Nanosheet Synaptic Transistors for Supervised Pattern Classification
Abstract In the biological neural network, the learning process is achieved through massively parallel synaptic connections between neurons that can be adjusted in an analog manner. Recent developments in emerging synaptic devices and their networks can emulate the functionality of a biological neur...
Enregistré dans:
Auteurs principaux: | Sungho Kim, Bongsik Choi, Jinsu Yoon, Yongwoo Lee, Hee-Dong Kim, Min-Ho Kang, Sung-Jin Choi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1293c3d3dff445459076ec2c8a20057c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network
par: Sungho Kim, et autres
Publié: (2019) -
Synaptic metaplasticity in binarized neural networks
par: Axel Laborieux, et autres
Publié: (2021) -
Determination of individual contact interfaces in carbon nanotube network-based transistors
par: Jinsu Yoon, et autres
Publié: (2017) -
An adiabatic method to train binarized artificial neural networks
par: Yuansheng Zhao, et autres
Publié: (2021) -
Inkjet-printed stretchable and low voltage synaptic transistor array
par: F. Molina-Lopez, et autres
Publié: (2019)