Genes and regulatory mechanisms associated with experimentally-induced bovine respiratory disease identified using supervised machine learning methodology
Abstract Bovine respiratory disease (BRD) is a multifactorial disease involving complex host immune interactions shaped by pathogenic agents and environmental factors. Advancements in RNA sequencing and associated analytical methods are improving our understanding of host response related to BRD pat...
Enregistré dans:
Auteurs principaux: | Matthew A. Scott, Amelia R. Woolums, Cyprianna E. Swiderski, Andy D. Perkins, Bindu Nanduri |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/129c74af2e0e42edacc1e1ed6e71e16c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application of supervised machine learning as a method for identifying DEM contact law parameters
par: Piotr Klejment
Publié: (2021) -
Supervised Learning in Physical Networks: From Machine Learning to Learning Machines
par: Menachem Stern, et autres
Publié: (2021) -
Modeling the pasture-associated severe equine asthma bronchoalveolar lavage fluid proteome identifies molecular events mediating neutrophilic airway inflammation
par: Bright LA, et autres
Publié: (2019) -
Cardiac Troponin-I Concentration In Weaned Calves With Bovine Respiratory Disease
par: Hanedan Basak, et autres
Publié: (2015) -
Molecular function recognition by supervised projection pursuit machine learning
par: Tyler Grear, et autres
Publié: (2021)