DP-MVS: Detail Preserving Multi-View Surface Reconstruction of Large-Scale Scenes

This paper presents an accurate and robust dense 3D reconstruction system for detail preserving surface modeling of large-scale scenes from multi-view images, which we named DP-MVS. Our system performs high-quality large-scale dense reconstruction, which preserves geometric details for thin structur...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liyang Zhou, Zhuang Zhang, Hanqing Jiang, Han Sun, Hujun Bao, Guofeng Zhang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/12aa9427d272436faf18d5ca457a7c29
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper presents an accurate and robust dense 3D reconstruction system for detail preserving surface modeling of large-scale scenes from multi-view images, which we named DP-MVS. Our system performs high-quality large-scale dense reconstruction, which preserves geometric details for thin structures, especially for linear objects. Our framework begins with a sparse reconstruction carried out by an incremental Structure-from-Motion. Based on the reconstructed sparse map, a novel detail preserving PatchMatch approach is applied for depth estimation of each image view. The estimated depth maps of multiple views are then fused to a dense point cloud in a memory-efficient way, followed by a detail-aware surface meshing method to extract the final surface mesh of the captured scene. Experiments on ETH3D benchmark show that the proposed method outperforms other state-of-the-art methods on F1-score, with the running time more than 4 times faster. More experiments on large-scale photo collections demonstrate the effectiveness of the proposed framework for large-scale scene reconstruction in terms of accuracy, completeness, memory saving, and time efficiency.