Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:12b7d69682c04fc38cfe252ad2aedc1b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:12b7d69682c04fc38cfe252ad2aedc1b2021-12-02T17:27:20ZCombining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism10.1038/s41467-020-17910-12041-1723https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b2020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17910-1https://doaj.org/toc/2041-1723In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s yeast.Jie ZhangSøren D. PetersenTijana RadivojevicAndrés RamirezAndrés Pérez-ManríquezEduardo AbeliukBenjamín J. SánchezZak CostelloYu ChenMichael J. FeroHector Garcia MartinJens NielsenJay D. KeaslingMichael K. JensenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jie Zhang Søren D. Petersen Tijana Radivojevic Andrés Ramirez Andrés Pérez-Manríquez Eduardo Abeliuk Benjamín J. Sánchez Zak Costello Yu Chen Michael J. Fero Hector Garcia Martin Jens Nielsen Jay D. Keasling Michael K. Jensen Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism |
description |
In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s yeast. |
format |
article |
author |
Jie Zhang Søren D. Petersen Tijana Radivojevic Andrés Ramirez Andrés Pérez-Manríquez Eduardo Abeliuk Benjamín J. Sánchez Zak Costello Yu Chen Michael J. Fero Hector Garcia Martin Jens Nielsen Jay D. Keasling Michael K. Jensen |
author_facet |
Jie Zhang Søren D. Petersen Tijana Radivojevic Andrés Ramirez Andrés Pérez-Manríquez Eduardo Abeliuk Benjamín J. Sánchez Zak Costello Yu Chen Michael J. Fero Hector Garcia Martin Jens Nielsen Jay D. Keasling Michael K. Jensen |
author_sort |
Jie Zhang |
title |
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism |
title_short |
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism |
title_full |
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism |
title_fullStr |
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism |
title_full_unstemmed |
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism |
title_sort |
combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b |
work_keys_str_mv |
AT jiezhang combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT sørendpetersen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT tijanaradivojevic combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT andresramirez combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT andresperezmanriquez combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT eduardoabeliuk combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT benjaminjsanchez combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT zakcostello combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT yuchen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT michaeljfero combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT hectorgarciamartin combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT jensnielsen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT jaydkeasling combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism AT michaelkjensen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism |
_version_ |
1718380774983467008 |