Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism

In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jie Zhang, Søren D. Petersen, Tijana Radivojevic, Andrés Ramirez, Andrés Pérez-Manríquez, Eduardo Abeliuk, Benjamín J. Sánchez, Zak Costello, Yu Chen, Michael J. Fero, Hector Garcia Martin, Jens Nielsen, Jay D. Keasling, Michael K. Jensen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:12b7d69682c04fc38cfe252ad2aedc1b
record_format dspace
spelling oai:doaj.org-article:12b7d69682c04fc38cfe252ad2aedc1b2021-12-02T17:27:20ZCombining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism10.1038/s41467-020-17910-12041-1723https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b2020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17910-1https://doaj.org/toc/2041-1723In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s yeast.Jie ZhangSøren D. PetersenTijana RadivojevicAndrés RamirezAndrés Pérez-ManríquezEduardo AbeliukBenjamín J. SánchezZak CostelloYu ChenMichael J. FeroHector Garcia MartinJens NielsenJay D. KeaslingMichael K. JensenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jie Zhang
Søren D. Petersen
Tijana Radivojevic
Andrés Ramirez
Andrés Pérez-Manríquez
Eduardo Abeliuk
Benjamín J. Sánchez
Zak Costello
Yu Chen
Michael J. Fero
Hector Garcia Martin
Jens Nielsen
Jay D. Keasling
Michael K. Jensen
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
description In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s yeast.
format article
author Jie Zhang
Søren D. Petersen
Tijana Radivojevic
Andrés Ramirez
Andrés Pérez-Manríquez
Eduardo Abeliuk
Benjamín J. Sánchez
Zak Costello
Yu Chen
Michael J. Fero
Hector Garcia Martin
Jens Nielsen
Jay D. Keasling
Michael K. Jensen
author_facet Jie Zhang
Søren D. Petersen
Tijana Radivojevic
Andrés Ramirez
Andrés Pérez-Manríquez
Eduardo Abeliuk
Benjamín J. Sánchez
Zak Costello
Yu Chen
Michael J. Fero
Hector Garcia Martin
Jens Nielsen
Jay D. Keasling
Michael K. Jensen
author_sort Jie Zhang
title Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
title_short Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
title_full Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
title_fullStr Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
title_full_unstemmed Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
title_sort combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b
work_keys_str_mv AT jiezhang combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT sørendpetersen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT tijanaradivojevic combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT andresramirez combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT andresperezmanriquez combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT eduardoabeliuk combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT benjaminjsanchez combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT zakcostello combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT yuchen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT michaeljfero combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT hectorgarciamartin combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT jensnielsen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT jaydkeasling combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
AT michaelkjensen combiningmechanisticandmachinelearningmodelsforpredictiveengineeringandoptimizationoftryptophanmetabolism
_version_ 1718380774983467008