Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis
Stanford type A aortic dissection (TAAD) is one of the most dangerous vascular diseases worldwide, and the mechanisms of its development remain unclear. Further molecular pathology studies may contribute to a comprehensive understanding of TAAD and provide new insights into diagnostic markers and po...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/12c2720191b546baa4a2e82ee0e9e4f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:12c2720191b546baa4a2e82ee0e9e4f0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:12c2720191b546baa4a2e82ee0e9e4f02021-12-01T14:41:00ZRole of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis2165-59792165-598710.1080/21655979.2021.1988840https://doaj.org/article/12c2720191b546baa4a2e82ee0e9e4f02021-12-01T00:00:00Zhttp://dx.doi.org/10.1080/21655979.2021.1988840https://doaj.org/toc/2165-5979https://doaj.org/toc/2165-5987Stanford type A aortic dissection (TAAD) is one of the most dangerous vascular diseases worldwide, and the mechanisms of its development remain unclear. Further molecular pathology studies may contribute to a comprehensive understanding of TAAD and provide new insights into diagnostic markers and potential therapeutic targets. Recent studies have identified that ferroptosis, a form of cell death, may play a previously unrecognized role in influencing the development of TAAD. In this study, we explored the pathological role of ferroptosis in TAAD by performing bioinformatics analyses. Gene set enrichment analysis (GSEA) showed that the ferroptosis-related gene (FRG) set was significantly different between normal and TAAD aortic samples at an overall level (p < 0.001). Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses explored the potential functions and pathways of FRG in TAAD. We further identified six key genes (CA9, HMOX1, IL6, CDKN1A, HIF1A, MYC) from differentially expressed FRGs in TAAD by constructing a protein–protein interaction (PPI) network, all key genes were upregulated in TAAD. Four of the key genes (CA9, IL6, CDKN1A, and HIF1A) were demonstrated to be correlated with cigarette smoke extract-induced ferroptosis in aortic vascular smooth muscle cells. These results suggest that ferroptosis is one of the essential pathological processes in the development of TAAD, and some FRGs affect TAAD development by mediating cellular ferroptosis, which provides deepening insights into the molecular mechanisms and potential therapeutic targets of TAAD.Hua-Xi ZouBai-Quan QiuSong-Qing LaiHuang HuangXue-Liang ZhouCheng-Wu GongLi-Jun WangMing-Ming Yuanan-Di HeJi-Chun LiuTaylor & Francis Grouparticleferroptosisstanford type a aortic dissectionkey genesdatabasebioinformatics analysisBiotechnologyTP248.13-248.65ENBioengineered, Vol 12, Iss 2, Pp 9976-9990 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ferroptosis stanford type a aortic dissection key genes database bioinformatics analysis Biotechnology TP248.13-248.65 |
spellingShingle |
ferroptosis stanford type a aortic dissection key genes database bioinformatics analysis Biotechnology TP248.13-248.65 Hua-Xi Zou Bai-Quan Qiu Song-Qing Lai Huang Huang Xue-Liang Zhou Cheng-Wu Gong Li-Jun Wang Ming-Ming Yuan an-Di He Ji-Chun Liu Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis |
description |
Stanford type A aortic dissection (TAAD) is one of the most dangerous vascular diseases worldwide, and the mechanisms of its development remain unclear. Further molecular pathology studies may contribute to a comprehensive understanding of TAAD and provide new insights into diagnostic markers and potential therapeutic targets. Recent studies have identified that ferroptosis, a form of cell death, may play a previously unrecognized role in influencing the development of TAAD. In this study, we explored the pathological role of ferroptosis in TAAD by performing bioinformatics analyses. Gene set enrichment analysis (GSEA) showed that the ferroptosis-related gene (FRG) set was significantly different between normal and TAAD aortic samples at an overall level (p < 0.001). Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses explored the potential functions and pathways of FRG in TAAD. We further identified six key genes (CA9, HMOX1, IL6, CDKN1A, HIF1A, MYC) from differentially expressed FRGs in TAAD by constructing a protein–protein interaction (PPI) network, all key genes were upregulated in TAAD. Four of the key genes (CA9, IL6, CDKN1A, and HIF1A) were demonstrated to be correlated with cigarette smoke extract-induced ferroptosis in aortic vascular smooth muscle cells. These results suggest that ferroptosis is one of the essential pathological processes in the development of TAAD, and some FRGs affect TAAD development by mediating cellular ferroptosis, which provides deepening insights into the molecular mechanisms and potential therapeutic targets of TAAD. |
format |
article |
author |
Hua-Xi Zou Bai-Quan Qiu Song-Qing Lai Huang Huang Xue-Liang Zhou Cheng-Wu Gong Li-Jun Wang Ming-Ming Yuan an-Di He Ji-Chun Liu |
author_facet |
Hua-Xi Zou Bai-Quan Qiu Song-Qing Lai Huang Huang Xue-Liang Zhou Cheng-Wu Gong Li-Jun Wang Ming-Ming Yuan an-Di He Ji-Chun Liu |
author_sort |
Hua-Xi Zou |
title |
Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis |
title_short |
Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis |
title_full |
Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis |
title_fullStr |
Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis |
title_full_unstemmed |
Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis |
title_sort |
role of ferroptosis-related genes in stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis |
publisher |
Taylor & Francis Group |
publishDate |
2021 |
url |
https://doaj.org/article/12c2720191b546baa4a2e82ee0e9e4f0 |
work_keys_str_mv |
AT huaxizou roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT baiquanqiu roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT songqinglai roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT huanghuang roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT xueliangzhou roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT chengwugong roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT lijunwang roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT mingmingyuan roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT andihe roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis AT jichunliu roleofferroptosisrelatedgenesinstanfordtypeaaorticdissectionandidentificationofkeygenesnewinsightsfrombioinformaticanalysis |
_version_ |
1718404978387714048 |