Comparison Study of Electromyography Using Wavelet and Neural Network
In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researc...
Guardado en:
Autores principales: | Nebras Hussain Gheab, Sadeem Nabeel Saleem |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Al-Khwarizmi College of Engineering – University of Baghdad
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/12c8f800dc4e4818b62e9b3dd67e8a5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison Study of Electromyography UsingWavelet and Neural Network
por: Sadeem Nabeel Saleem, et al.
Publicado: (2008) -
Analysis of Different Hand and Finger Grip Patterns using Surface Electromyography and Hand Dynamometry
por: A. Buniya, et al.
Publicado: (2020) -
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
por: Firas Ali
Publicado: (2007) -
Reduction of the error in the hardware neural network
por: Dhafer r. Zaghar
Publicado: (2007) -
Studying the Radial and Tangential Velocity Components of the Epithelization Healing Post Photorefractive Keratectomy Surgery of the Human Eye
por: Nebras H. Ghaeb
Publicado: (2020)