Comparison Study of Electromyography Using Wavelet and Neural Network
In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researc...
Enregistré dans:
Auteurs principaux: | Nebras Hussain Gheab, Sadeem Nabeel Saleem |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Al-Khwarizmi College of Engineering – University of Baghdad
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/12c8f800dc4e4818b62e9b3dd67e8a5e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Comparison Study of Electromyography UsingWavelet and Neural Network
par: Sadeem Nabeel Saleem, et autres
Publié: (2008) -
Analysis of Different Hand and Finger Grip Patterns using Surface Electromyography and Hand Dynamometry
par: A. Buniya, et autres
Publié: (2020) -
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
par: Firas Ali
Publié: (2007) -
Reduction of the error in the hardware neural network
par: Dhafer r. Zaghar
Publié: (2007) -
Studying the Radial and Tangential Velocity Components of the Epithelization Healing Post Photorefractive Keratectomy Surgery of the Human Eye
par: Nebras H. Ghaeb
Publié: (2020)