Generation of Talbot-like fields

Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a fie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jorge A. Anaya-Contreras, Arturo Zúñiga-Segundo, David Sánchez-de-la-Llave, Héctor M. Moya-Cessa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/12e5d52d09514f6384cc01ec71a7a249
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a field that reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it is shown that the superposition of Airy beams produces self-focusing.