Generation of Talbot-like fields
Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a fie...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/12e5d52d09514f6384cc01ec71a7a249 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:12e5d52d09514f6384cc01ec71a7a249 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:12e5d52d09514f6384cc01ec71a7a2492021-12-02T15:07:47ZGeneration of Talbot-like fields10.1038/s41598-021-95697-x2045-2322https://doaj.org/article/12e5d52d09514f6384cc01ec71a7a2492021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95697-xhttps://doaj.org/toc/2045-2322Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a field that reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it is shown that the superposition of Airy beams produces self-focusing.Jorge A. Anaya-ContrerasArturo Zúñiga-SegundoDavid Sánchez-de-la-LlaveHéctor M. Moya-CessaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jorge A. Anaya-Contreras Arturo Zúñiga-Segundo David Sánchez-de-la-Llave Héctor M. Moya-Cessa Generation of Talbot-like fields |
description |
Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a field that reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it is shown that the superposition of Airy beams produces self-focusing. |
format |
article |
author |
Jorge A. Anaya-Contreras Arturo Zúñiga-Segundo David Sánchez-de-la-Llave Héctor M. Moya-Cessa |
author_facet |
Jorge A. Anaya-Contreras Arturo Zúñiga-Segundo David Sánchez-de-la-Llave Héctor M. Moya-Cessa |
author_sort |
Jorge A. Anaya-Contreras |
title |
Generation of Talbot-like fields |
title_short |
Generation of Talbot-like fields |
title_full |
Generation of Talbot-like fields |
title_fullStr |
Generation of Talbot-like fields |
title_full_unstemmed |
Generation of Talbot-like fields |
title_sort |
generation of talbot-like fields |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/12e5d52d09514f6384cc01ec71a7a249 |
work_keys_str_mv |
AT jorgeaanayacontreras generationoftalbotlikefields AT arturozunigasegundo generationoftalbotlikefields AT davidsanchezdelallave generationoftalbotlikefields AT hectormmoyacessa generationoftalbotlikefields |
_version_ |
1718388367300755456 |