Generation of Talbot-like fields

Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a fie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jorge A. Anaya-Contreras, Arturo Zúñiga-Segundo, David Sánchez-de-la-Llave, Héctor M. Moya-Cessa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/12e5d52d09514f6384cc01ec71a7a249
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:12e5d52d09514f6384cc01ec71a7a249
record_format dspace
spelling oai:doaj.org-article:12e5d52d09514f6384cc01ec71a7a2492021-12-02T15:07:47ZGeneration of Talbot-like fields10.1038/s41598-021-95697-x2045-2322https://doaj.org/article/12e5d52d09514f6384cc01ec71a7a2492021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95697-xhttps://doaj.org/toc/2045-2322Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a field that reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it is shown that the superposition of Airy beams produces self-focusing.Jorge A. Anaya-ContrerasArturo Zúñiga-SegundoDavid Sánchez-de-la-LlaveHéctor M. Moya-CessaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jorge A. Anaya-Contreras
Arturo Zúñiga-Segundo
David Sánchez-de-la-Llave
Héctor M. Moya-Cessa
Generation of Talbot-like fields
description Abstract We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of Airy beams, both over the square root of the radial coordinate, and show how to construct a field that reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it is shown that the superposition of Airy beams produces self-focusing.
format article
author Jorge A. Anaya-Contreras
Arturo Zúñiga-Segundo
David Sánchez-de-la-Llave
Héctor M. Moya-Cessa
author_facet Jorge A. Anaya-Contreras
Arturo Zúñiga-Segundo
David Sánchez-de-la-Llave
Héctor M. Moya-Cessa
author_sort Jorge A. Anaya-Contreras
title Generation of Talbot-like fields
title_short Generation of Talbot-like fields
title_full Generation of Talbot-like fields
title_fullStr Generation of Talbot-like fields
title_full_unstemmed Generation of Talbot-like fields
title_sort generation of talbot-like fields
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/12e5d52d09514f6384cc01ec71a7a249
work_keys_str_mv AT jorgeaanayacontreras generationoftalbotlikefields
AT arturozunigasegundo generationoftalbotlikefields
AT davidsanchezdelallave generationoftalbotlikefields
AT hectormmoyacessa generationoftalbotlikefields
_version_ 1718388367300755456