Global resolution of the support vector machine regression parameters selection problem with LPCC
Support vector machine regression is a robust data fitting method to minimize the sum of deducted residuals of regression, and thus is less sensitive to changes of data near the regression hyperplane. Two design parameters, the insensitive tube size (εe) and the weight assigned to the regression err...
Enregistré dans:
Auteurs principaux: | Yu-Ching Lee, Jong-Shi Pang, JohnE. Mitchell |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2015
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/12eb93a85e024a6791ee2a350bf105c4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
par: W.e.i. Jiang, et autres
Publié: (2020) -
A bounded degree SOS hierarchy for polynomial optimization
par: JeanB. Lasserre, et autres
Publié: (2017) -
Alternative SDP and SOCP approximations for polynomial optimization
par: Xiaolong Kuang, et autres
Publié: (2019) -
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
par: Gabriele Eichfelder, et autres
Publié: (2016) -
Portfolio optimization with pw-robustness
par: Virginie Gabrel, et autres
Publié: (2018)