Global resolution of the support vector machine regression parameters selection problem with LPCC
Support vector machine regression is a robust data fitting method to minimize the sum of deducted residuals of regression, and thus is less sensitive to changes of data near the regression hyperplane. Two design parameters, the insensitive tube size (εe) and the weight assigned to the regression err...
Guardado en:
Autores principales: | Yu-Ching Lee, Jong-Shi Pang, JohnE. Mitchell |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/12eb93a85e024a6791ee2a350bf105c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
por: W.e.i. Jiang, et al.
Publicado: (2020) -
A bounded degree SOS hierarchy for polynomial optimization
por: JeanB. Lasserre, et al.
Publicado: (2017) -
Alternative SDP and SOCP approximations for polynomial optimization
por: Xiaolong Kuang, et al.
Publicado: (2019) -
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
por: Gabriele Eichfelder, et al.
Publicado: (2016) -
Portfolio optimization with pw-robustness
por: Virginie Gabrel, et al.
Publicado: (2018)