Testing Basic Gradient Turbulent Transport Models for Swirl Burners Using PIV and PLIF

The present paper reports on the combined stereoscopic particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements of turbulent transport for model swirl burners without combustion. Two flow types were considered, namely the mixing of a free jet with surrounding air fo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexey Savitskii, Aleksei Lobasov, Dmitriy Sharaborin, Vladimir Dulin
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/12f986ccec8d4fd8a2e4f7f4ac3acd64
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The present paper reports on the combined stereoscopic particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements of turbulent transport for model swirl burners without combustion. Two flow types were considered, namely the mixing of a free jet with surrounding air for different swirl rates of the jet (Re = 5 × 10<sup>3</sup>) and the mixing of a pilot jet (Re = 2 × 10<sup>4</sup>) with a high-swirl co-flow of a generic gas turbine burner (Re = 3 × 10<sup>4</sup>). The measured spatial distributions of the turbulent Reynolds stresses and fluxes were compared with their predictions by gradient turbulent transport models. The local values of the turbulent viscosity and turbulent diffusivity coefficients were evaluated based on Boussinesq’s and gradient diffusion hypotheses. The studied flows with high swirl were characterized by a vortex core breakdown and intensive coherent flow fluctuations associated with large-scale vortex structures. Therefore, the contribution of the coherent flow fluctuations to the turbulent transport was evaluated based on proper orthogonal decomposition (POD). The turbulent viscosity and diffusion coefficients were also evaluated for the stochastic (residual) component of the velocity fluctuations. The high-swirl flows with vortex breakdown for the free jet and for the combustion chamber were characterized by intensive turbulent fluctuations, which contributed substantially to the local turbulent transport of mass and momentum. Moreover, the high-swirl flows were characterized by counter-gradient transport for one Reynolds shear stress component near the jet axis and in the outer region of the mixing layer.