YOT-Net: YOLOv3 Combined Triplet Loss Network for Copper Elbow Surface Defect Detection
Copper elbows are an important product in industry. They are used to connect pipes for transferring gas, oil, and liquids. Defective copper elbows can lead to serious industrial accidents. In this paper, a novel model named YOT-Net (YOLOv3 combined triplet loss network) is proposed to automatically...
Guardado en:
Autores principales: | Yuanqing Xian, Guangjun Liu, Jinfu Fan, Yang Yu, Zhongjie Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1302b5f0badd4b64b036af395ca8aeb0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Endoprosthesis replacement at the treatment of elbow joint defects
por: A. B. Slobodskoy, et al.
Publicado: (2017) - Shoulder & elbow
-
Elbow Stiffness Imaging: A Practical Diagnostic and Pretherapeutic Approach
por: Charles Lombard, et al.
Publicado: (2021) -
Fast matching method of bullet rifling traces based on sharedconnection triplet convolutional neural network
por: Nan PAN, et al.
Publicado: (2021) -
Radiographic Determination of the Canine Elbow Joint Angle in Collimated Views
por: Sofia Alves-Pimenta, et al.
Publicado: (2021)