YOT-Net: YOLOv3 Combined Triplet Loss Network for Copper Elbow Surface Defect Detection
Copper elbows are an important product in industry. They are used to connect pipes for transferring gas, oil, and liquids. Defective copper elbows can lead to serious industrial accidents. In this paper, a novel model named YOT-Net (YOLOv3 combined triplet loss network) is proposed to automatically...
Enregistré dans:
Auteurs principaux: | Yuanqing Xian, Guangjun Liu, Jinfu Fan, Yang Yu, Zhongjie Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1302b5f0badd4b64b036af395ca8aeb0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Endoprosthesis replacement at the treatment of elbow joint defects
par: A. B. Slobodskoy, et autres
Publié: (2017) - Shoulder & elbow
-
Elbow Stiffness Imaging: A Practical Diagnostic and Pretherapeutic Approach
par: Charles Lombard, et autres
Publié: (2021) -
Fast matching method of bullet rifling traces based on sharedconnection triplet convolutional neural network
par: Nan PAN, et autres
Publié: (2021) -
Radiographic Determination of the Canine Elbow Joint Angle in Collimated Views
par: Sofia Alves-Pimenta, et autres
Publié: (2021)