Deep Bayesian local crystallography

Abstract The advent of high-resolution electron and scanning probe microscopy imaging has opened the floodgates for acquiring atomically resolved images of bulk materials, 2D materials, and surfaces. This plethora of data contains an immense volume of information on materials structures, structural...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sergei V. Kalinin, Mark P. Oxley, Mani Valleti, Junjie Zhang, Raphael P. Hermann, Hong Zheng, Wenrui Zhang, Gyula Eres, Rama K. Vasudevan, Maxim Ziatdinov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/13085c9b5ce442438a7c22e2d30d8e85
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:13085c9b5ce442438a7c22e2d30d8e85
record_format dspace
spelling oai:doaj.org-article:13085c9b5ce442438a7c22e2d30d8e852021-11-14T12:15:28ZDeep Bayesian local crystallography10.1038/s41524-021-00621-62057-3960https://doaj.org/article/13085c9b5ce442438a7c22e2d30d8e852021-11-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00621-6https://doaj.org/toc/2057-3960Abstract The advent of high-resolution electron and scanning probe microscopy imaging has opened the floodgates for acquiring atomically resolved images of bulk materials, 2D materials, and surfaces. This plethora of data contains an immense volume of information on materials structures, structural distortions, and physical functionalities. Harnessing this knowledge regarding local physical phenomena necessitates the development of the mathematical frameworks for extraction of relevant information. However, the analysis of atomically resolved images is often based on the adaptation of concepts from macroscopic physics, notably translational and point group symmetries and symmetry lowering phenomena. Here, we explore the bottom-up definition of structural units and symmetry in atomically resolved data using a Bayesian framework. We demonstrate the need for a Bayesian definition of symmetry using a simple toy model and demonstrate how this definition can be extended to the experimental data using deep learning networks in a Bayesian setting, namely rotationally invariant variational autoencoders.Sergei V. KalininMark P. OxleyMani ValletiJunjie ZhangRaphael P. HermannHong ZhengWenrui ZhangGyula EresRama K. VasudevanMaxim ZiatdinovNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Sergei V. Kalinin
Mark P. Oxley
Mani Valleti
Junjie Zhang
Raphael P. Hermann
Hong Zheng
Wenrui Zhang
Gyula Eres
Rama K. Vasudevan
Maxim Ziatdinov
Deep Bayesian local crystallography
description Abstract The advent of high-resolution electron and scanning probe microscopy imaging has opened the floodgates for acquiring atomically resolved images of bulk materials, 2D materials, and surfaces. This plethora of data contains an immense volume of information on materials structures, structural distortions, and physical functionalities. Harnessing this knowledge regarding local physical phenomena necessitates the development of the mathematical frameworks for extraction of relevant information. However, the analysis of atomically resolved images is often based on the adaptation of concepts from macroscopic physics, notably translational and point group symmetries and symmetry lowering phenomena. Here, we explore the bottom-up definition of structural units and symmetry in atomically resolved data using a Bayesian framework. We demonstrate the need for a Bayesian definition of symmetry using a simple toy model and demonstrate how this definition can be extended to the experimental data using deep learning networks in a Bayesian setting, namely rotationally invariant variational autoencoders.
format article
author Sergei V. Kalinin
Mark P. Oxley
Mani Valleti
Junjie Zhang
Raphael P. Hermann
Hong Zheng
Wenrui Zhang
Gyula Eres
Rama K. Vasudevan
Maxim Ziatdinov
author_facet Sergei V. Kalinin
Mark P. Oxley
Mani Valleti
Junjie Zhang
Raphael P. Hermann
Hong Zheng
Wenrui Zhang
Gyula Eres
Rama K. Vasudevan
Maxim Ziatdinov
author_sort Sergei V. Kalinin
title Deep Bayesian local crystallography
title_short Deep Bayesian local crystallography
title_full Deep Bayesian local crystallography
title_fullStr Deep Bayesian local crystallography
title_full_unstemmed Deep Bayesian local crystallography
title_sort deep bayesian local crystallography
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/13085c9b5ce442438a7c22e2d30d8e85
work_keys_str_mv AT sergeivkalinin deepbayesianlocalcrystallography
AT markpoxley deepbayesianlocalcrystallography
AT manivalleti deepbayesianlocalcrystallography
AT junjiezhang deepbayesianlocalcrystallography
AT raphaelphermann deepbayesianlocalcrystallography
AT hongzheng deepbayesianlocalcrystallography
AT wenruizhang deepbayesianlocalcrystallography
AT gyulaeres deepbayesianlocalcrystallography
AT ramakvasudevan deepbayesianlocalcrystallography
AT maximziatdinov deepbayesianlocalcrystallography
_version_ 1718429330773639168