Deep Bayesian local crystallography
Abstract The advent of high-resolution electron and scanning probe microscopy imaging has opened the floodgates for acquiring atomically resolved images of bulk materials, 2D materials, and surfaces. This plethora of data contains an immense volume of information on materials structures, structural...
Guardado en:
Autores principales: | Sergei V. Kalinin, Mark P. Oxley, Mani Valleti, Junjie Zhang, Raphael P. Hermann, Hong Zheng, Wenrui Zhang, Gyula Eres, Rama K. Vasudevan, Maxim Ziatdinov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13085c9b5ce442438a7c22e2d30d8e85 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
por: Christopher T. Nelson, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017)