DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation

Abstract Deep learning algorithms have recently been developed that utilize patient anatomy and raw imaging information to predict radiation dose, as a means to increase treatment planning efficiency and improve radiotherapy plan quality. Current state-of-the-art techniques rely on convolutional neu...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Vasant Kearney, Jason W. Chan, Tianqi Wang, Alan Perry, Martina Descovich, Olivier Morin, Sue S. Yom, Timothy D. Solberg
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/1308bcc4ec654ecf9fb3ab5e9bc669a1
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!