DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation
Abstract Deep learning algorithms have recently been developed that utilize patient anatomy and raw imaging information to predict radiation dose, as a means to increase treatment planning efficiency and improve radiotherapy plan quality. Current state-of-the-art techniques rely on convolutional neu...
Guardado en:
Autores principales: | Vasant Kearney, Jason W. Chan, Tianqi Wang, Alan Perry, Martina Descovich, Olivier Morin, Sue S. Yom, Timothy D. Solberg |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1308bcc4ec654ecf9fb3ab5e9bc669a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DisasterGAN: Generative Adversarial Networks for Remote Sensing Disaster Image Generation
por: Xue Rui, et al.
Publicado: (2021) -
GAN-GL: Generative Adversarial Networks for Glacial Lake Mapping
por: Hang Zhao, et al.
Publicado: (2021) -
An Attention-Based Generative Adversarial Network for Producing Illustrative Sketches
por: Jihyeon Yeom, et al.
Publicado: (2021) -
RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network
por: Yu Chen, et al.
Publicado: (2021) -
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
por: Saman Motamed, et al.
Publicado: (2021)