A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene
PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lymphoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense mutations of this gene have already been found in...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/130e25749fdd4ee5b61dae6542af2dfd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:130e25749fdd4ee5b61dae6542af2dfd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:130e25749fdd4ee5b61dae6542af2dfd2021-11-25T06:19:33ZA computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene1932-6203https://doaj.org/article/130e25749fdd4ee5b61dae6542af2dfd2021-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601573/?tool=EBIhttps://doaj.org/toc/1932-6203PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lymphoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense mutations of this gene have already been found in patients of CTCL and AITL. The non-synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein structure as well as its functions. In this study, probable deleterious and disease-related nsSNPs in PLCG1 were identified using SIFT, PROVEAN, PolyPhen-2, PhD-SNP, Pmut, and SNPS&GO tools. Further, their effect on protein stability was checked along with conservation and solvent accessibility analysis by I-mutant 2.0, MUpro, Consurf, and Netsurf 2.0 server. Some SNPs were finalized for structural analysis with PyMol and BIOVIA discovery studio visualizer. Out of the 16 nsSNPs which were found to be deleterious, ten nsSNPs had an effect on protein stability, and six mutations (L411P, R355C, G493D, R1158H, A401V and L455F) were predicted to be highly conserved. Among the six highly conserved mutations, four nsSNPs (R355C, A401V, L411P and L455F) were part of the catalytic domain. L411P, L455F and G493D made significant structural change in the protein structure. Two mutations-Y210C and R1158H had post-translational modification. In the 5’ and 3’ untranslated region, three SNPs, rs139043247, rs543804707, and rs62621919 showed possible miRNA target sites and DNA binding sites. This in silico analysis has provided a structured dataset of PLCG1 gene for further in vivo researches. With the limitation of computational study, it can still prove to be an asset for the identification and treatment of multiple diseases associated with the target gene.Safayat Mahmud KhanAr-Rafi Md. FaisalTasnin Akter NilaNabila Nawar BintiMd. Ismail HosenHossain Uddin ShekharPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Safayat Mahmud Khan Ar-Rafi Md. Faisal Tasnin Akter Nila Nabila Nawar Binti Md. Ismail Hosen Hossain Uddin Shekhar A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene |
description |
PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lymphoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense mutations of this gene have already been found in patients of CTCL and AITL. The non-synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein structure as well as its functions. In this study, probable deleterious and disease-related nsSNPs in PLCG1 were identified using SIFT, PROVEAN, PolyPhen-2, PhD-SNP, Pmut, and SNPS&GO tools. Further, their effect on protein stability was checked along with conservation and solvent accessibility analysis by I-mutant 2.0, MUpro, Consurf, and Netsurf 2.0 server. Some SNPs were finalized for structural analysis with PyMol and BIOVIA discovery studio visualizer. Out of the 16 nsSNPs which were found to be deleterious, ten nsSNPs had an effect on protein stability, and six mutations (L411P, R355C, G493D, R1158H, A401V and L455F) were predicted to be highly conserved. Among the six highly conserved mutations, four nsSNPs (R355C, A401V, L411P and L455F) were part of the catalytic domain. L411P, L455F and G493D made significant structural change in the protein structure. Two mutations-Y210C and R1158H had post-translational modification. In the 5’ and 3’ untranslated region, three SNPs, rs139043247, rs543804707, and rs62621919 showed possible miRNA target sites and DNA binding sites. This in silico analysis has provided a structured dataset of PLCG1 gene for further in vivo researches. With the limitation of computational study, it can still prove to be an asset for the identification and treatment of multiple diseases associated with the target gene. |
format |
article |
author |
Safayat Mahmud Khan Ar-Rafi Md. Faisal Tasnin Akter Nila Nabila Nawar Binti Md. Ismail Hosen Hossain Uddin Shekhar |
author_facet |
Safayat Mahmud Khan Ar-Rafi Md. Faisal Tasnin Akter Nila Nabila Nawar Binti Md. Ismail Hosen Hossain Uddin Shekhar |
author_sort |
Safayat Mahmud Khan |
title |
A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene |
title_short |
A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene |
title_full |
A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene |
title_fullStr |
A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene |
title_full_unstemmed |
A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene |
title_sort |
computational in silico approach to predict high-risk coding and non-coding snps of human plcg1 gene |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/130e25749fdd4ee5b61dae6542af2dfd |
work_keys_str_mv |
AT safayatmahmudkhan acomputationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT arrafimdfaisal acomputationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT tasninakternila acomputationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT nabilanawarbinti acomputationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT mdismailhosen acomputationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT hossainuddinshekhar acomputationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT safayatmahmudkhan computationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT arrafimdfaisal computationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT tasninakternila computationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT nabilanawarbinti computationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT mdismailhosen computationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene AT hossainuddinshekhar computationalinsilicoapproachtopredicthighriskcodingandnoncodingsnpsofhumanplcg1gene |
_version_ |
1718413847374594048 |