Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice

Erik Őrfi,1,2 Tamás Mészáros,1,2 Mark Hennies,3 Tamás Fülöp,1,2 László Dézsi,1,2 Alexander Nardocci,1 László Rosivall,1,2 Péter Hamar,4,5 Barry W Neun,6 Marina A Dobrovolsk...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Őrfi E, Mészáros T, Hennies M, Fülöp T, Dézsi L, Nardocci A, Rosivall L, Hamar P, Neun BW, Dobrovolskaia MA, Szebeni J, Szénási G
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/1310ff27dbfc4d2fb7b789a504b6712c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1310ff27dbfc4d2fb7b789a504b6712c
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Hypersensitivity
infusion reactions
zymosan
cobra venom factor
TXB2
cholesterol
anaphylatoxins
platelets
Medicine (General)
R5-920
spellingShingle Hypersensitivity
infusion reactions
zymosan
cobra venom factor
TXB2
cholesterol
anaphylatoxins
platelets
Medicine (General)
R5-920
Őrfi E
Mészáros T
Hennies M
Fülöp T
Dézsi L
Nardocci A
Rosivall L
Hamar P
Neun BW
Dobrovolskaia MA
Szebeni J
Szénási G
Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice
description Erik Őrfi,1,2 Tamás Mészáros,1,2 Mark Hennies,3 Tamás Fülöp,1,2 László Dézsi,1,2 Alexander Nardocci,1 László Rosivall,1,2 Péter Hamar,4,5 Barry W Neun,6 Marina A Dobrovolskaia,6 János Szebeni,1,2,7,* Gábor Szénási1,8,* 1Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary; 2SeroScience LCC., Cambridge, MA, USA; 3TECOdevelopment GmbH, Rheinbach, Germany; 4Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; 5Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; 6Nanotechnology Characterization Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA; 7Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary; 8Institute of Pathophysiology, Semmelweis University, Budapest, Hungary *These authors contributed equally to this work Purpose: Undesirable complement (C) activation by nanomedicines can entail an adverse immune reaction known as C activation-related pseudoallergy (CARPA) in sensitive patients. The syndrome includes cardiopulmonary, hemodynamic, and a variety of other physiological changes that have been well described in man, pigs, dogs, and rats. However, the information on CARPA is scarce and ambiguous in mice, a species widely used in preclinical studies. The present study aimed to fill this gap by exploring signs of CARPA in mice following i.v. administration of AmBisome and Abelcet, which are nano-formulations of Amphotericin B with high risk to cause CARPA. Materials and methods: Anesthetized NMRI mice were intravenously injected with liposomal amphotericin B (Abelcet and AmBisome; 30–300 mg phospholipid/kg), drug-free high cholesterol multilamellar vesicles (HC-MLV), and positive controls, cobra venom factor (CVF) and zymosan, followed by the measurement of blood pressure (BP), heart rate, white blood cell, and platelet counts and plasma thromboxane B2 (TXB2) levels. C activation was assessed by C3a ELISA, a C3 consumption assay (PAN-C3) and a modified sheep red blood cell hemolytic assay. Results: All test agents, except HC-MLV, caused transient hypertension, thrombocytopenia, and elevation of plasma TXB2, which were paralleled by significant rises of plasma C3a in CVF and zymosan-treated animals, wherein the initial hypertension turned into hypotension and shock. Abelcet and AmBisome caused minor, delayed rise of C3a that was not associated with hypertension. The C3a receptor inhibitor SB-290157 attenuated the hypertension caused by Abelcet and decreased the BP thereafter. Conclusion: The parallelism between C3a anaphylatoxin production and severity of physiological changes caused by the different agents is consistent with CARPA underlying these changes. Although the reactive dose of liposomal phospholipids was substantially higher than that in other species (pigs, dogs), the mouse seems suitable for studying the mechanism of hypersensitivity reactions to liposomal formulations of amphotericin B, a frequent side effect of these drugs. Keywords: hypersensitivity, infusion reactions, zymosan, cobra venom factor, TXB2, cholesterol, anaphylatoxins, platelets
format article
author Őrfi E
Mészáros T
Hennies M
Fülöp T
Dézsi L
Nardocci A
Rosivall L
Hamar P
Neun BW
Dobrovolskaia MA
Szebeni J
Szénási G
author_facet Őrfi E
Mészáros T
Hennies M
Fülöp T
Dézsi L
Nardocci A
Rosivall L
Hamar P
Neun BW
Dobrovolskaia MA
Szebeni J
Szénási G
author_sort Őrfi E
title Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice
title_short Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice
title_full Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice
title_fullStr Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice
title_full_unstemmed Acute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice
title_sort acute physiological changes caused by complement activators and amphotericin b-containing liposomes in mice
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/1310ff27dbfc4d2fb7b789a504b6712c
work_keys_str_mv AT orfie acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT meszarost acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT henniesm acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT fulopt acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT dezsil acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT nardoccia acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT rosivalll acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT hamarp acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT neunbw acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT dobrovolskaiama acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT szebenij acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
AT szenasig acutephysiologicalchangescausedbycomplementactivatorsandamphotericinbcontainingliposomesinmice
_version_ 1718401111011885056
spelling oai:doaj.org-article:1310ff27dbfc4d2fb7b789a504b6712c2021-12-02T04:39:19ZAcute physiological changes caused by complement activators and amphotericin B-containing liposomes in mice1178-2013https://doaj.org/article/1310ff27dbfc4d2fb7b789a504b6712c2019-02-01T00:00:00Zhttps://www.dovepress.com/acute-physiological-changes-caused-by-complement-activators-and-amphot-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Erik Őrfi,1,2 Tamás Mészáros,1,2 Mark Hennies,3 Tamás Fülöp,1,2 László Dézsi,1,2 Alexander Nardocci,1 László Rosivall,1,2 Péter Hamar,4,5 Barry W Neun,6 Marina A Dobrovolskaia,6 János Szebeni,1,2,7,* Gábor Szénási1,8,* 1Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary; 2SeroScience LCC., Cambridge, MA, USA; 3TECOdevelopment GmbH, Rheinbach, Germany; 4Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; 5Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; 6Nanotechnology Characterization Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA; 7Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary; 8Institute of Pathophysiology, Semmelweis University, Budapest, Hungary *These authors contributed equally to this work Purpose: Undesirable complement (C) activation by nanomedicines can entail an adverse immune reaction known as C activation-related pseudoallergy (CARPA) in sensitive patients. The syndrome includes cardiopulmonary, hemodynamic, and a variety of other physiological changes that have been well described in man, pigs, dogs, and rats. However, the information on CARPA is scarce and ambiguous in mice, a species widely used in preclinical studies. The present study aimed to fill this gap by exploring signs of CARPA in mice following i.v. administration of AmBisome and Abelcet, which are nano-formulations of Amphotericin B with high risk to cause CARPA. Materials and methods: Anesthetized NMRI mice were intravenously injected with liposomal amphotericin B (Abelcet and AmBisome; 30–300 mg phospholipid/kg), drug-free high cholesterol multilamellar vesicles (HC-MLV), and positive controls, cobra venom factor (CVF) and zymosan, followed by the measurement of blood pressure (BP), heart rate, white blood cell, and platelet counts and plasma thromboxane B2 (TXB2) levels. C activation was assessed by C3a ELISA, a C3 consumption assay (PAN-C3) and a modified sheep red blood cell hemolytic assay. Results: All test agents, except HC-MLV, caused transient hypertension, thrombocytopenia, and elevation of plasma TXB2, which were paralleled by significant rises of plasma C3a in CVF and zymosan-treated animals, wherein the initial hypertension turned into hypotension and shock. Abelcet and AmBisome caused minor, delayed rise of C3a that was not associated with hypertension. The C3a receptor inhibitor SB-290157 attenuated the hypertension caused by Abelcet and decreased the BP thereafter. Conclusion: The parallelism between C3a anaphylatoxin production and severity of physiological changes caused by the different agents is consistent with CARPA underlying these changes. Although the reactive dose of liposomal phospholipids was substantially higher than that in other species (pigs, dogs), the mouse seems suitable for studying the mechanism of hypersensitivity reactions to liposomal formulations of amphotericin B, a frequent side effect of these drugs. Keywords: hypersensitivity, infusion reactions, zymosan, cobra venom factor, TXB2, cholesterol, anaphylatoxins, plateletsŐrfi EMészáros THennies MFülöp TDézsi LNardocci ARosivall LHamar PNeun BWDobrovolskaia MASzebeni JSzénási GDove Medical PressarticleHypersensitivityinfusion reactionszymosancobra venom factorTXB2cholesterolanaphylatoxinsplateletsMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 1563-1573 (2019)