Neighborhood level chronic respiratory disease prevalence estimation using search query data.
Estimation of disease prevalence at sub-city neighborhood scale allows early and targeted interventions that can help save lives and reduce public health burdens. However, the cost-prohibitive nature of highly localized data collection and sparsity of representative signals, has made it challenging...
Guardado en:
Autores principales: | Nabeel Abdur Rehman, Scott Counts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/132ab6e149c44490929f2c1500c8c224 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Characterizing the time-perspective of nations with search engine query data.
por: Takao Noguchi, et al.
Publicado: (2014) -
Prediction of dengue incidence using search query surveillance.
por: Benjamin M Althouse, et al.
Publicado: (2011) -
Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance.
por: Emily H Chan, et al.
Publicado: (2011) -
Web search queries can predict stock market volumes.
por: Ilaria Bordino, et al.
Publicado: (2012) -
Variable neighborhood search: basics and variants
por: Pierre Hansen, et al.
Publicado: (2017)