Global existence and dynamic structure of solutions for damped wave equation involving the fractional Laplacian
We consider strong damped wave equation involving the fractional Laplacian with nonlinear source. The results of global solution under necessary conditions on the critical exponent are established. The existence is proved by using the Galerkin approximations combined with the potential well theory....
Guardado en:
Autores principales: | Bidi Younes, Beniani Abderrahmane, Zennir Khaled, Himadan Ahmed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/133009d19c1045f295e3f2b9810a3b5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
por: Wang Jun
Publicado: (2021) -
On quasilinear elliptic problems with finite or infinite potential wells
por: Liu Shibo
Publicado: (2021) -
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
por: Candito Pasquale, et al.
Publicado: (2021) -
On the extinction problem for a p-Laplacian equation with a nonlinear gradient source
por: Liu Dengming, et al.
Publicado: (2021)