Global existence and dynamic structure of solutions for damped wave equation involving the fractional Laplacian
We consider strong damped wave equation involving the fractional Laplacian with nonlinear source. The results of global solution under necessary conditions on the critical exponent are established. The existence is proved by using the Galerkin approximations combined with the potential well theory....
Enregistré dans:
Auteurs principaux: | Bidi Younes, Beniani Abderrahmane, Zennir Khaled, Himadan Ahmed |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/133009d19c1045f295e3f2b9810a3b5c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
par: Han Qi
Publié: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
par: Wang Jun
Publié: (2021) -
On quasilinear elliptic problems with finite or infinite potential wells
par: Liu Shibo
Publié: (2021) -
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
par: Candito Pasquale, et autres
Publié: (2021) -
On the extinction problem for a p-Laplacian equation with a nonlinear gradient source
par: Liu Dengming, et autres
Publié: (2021)