Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning
For decades, researchers have used the concepts of rate of change and differential equations to model and forecast neoplastic processes. This expressive mathematical apparatus brought significant insights in oncology by describing the unregulated proliferation and host interactions of cancer cells,...
Enregistré dans:
Auteurs principaux: | Daria Kurz, Carlos Salort Sánchez, Cristian Axenie |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/13337dfb05c64cd5a2f04d18df15cae3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Explainable AI for Data-Driven Feedback and Intelligent Action Recommendations to Support Students Self-Regulation
par: Muhammad Afzaal, et autres
Publié: (2021) -
Two-Bit Embedding Histogram-Prediction-Error Based Reversible Data Hiding for Medical Images with Smooth Area
par: Ching-Yu Yang, et autres
Publié: (2021) -
Big Data-Driven Macroeconomic Forecasting Model and Psychological Decision Behavior Analysis for Industry 4.0
par: Jie Liu
Publié: (2021) -
Improving outliers detection in data streams using LiCS and voting
par: Fatima-Zahra Benjelloun, et autres
Publié: (2021) -
Design of a Data-Driven Control System based on Reference Model using Predicted Input/Output Responses
par: Yuki Nakatani, et autres
Publié: (2021)