Artificial neurovascular network (ANVN) to study the accuracy vs. efficiency trade-off in an energy dependent neural network
Abstract Artificial feedforward neural networks perform a wide variety of classification and function approximation tasks with high accuracy. Unlike their artificial counterparts, biological neural networks require a supply of adequate energy delivered to single neurons by a network of cerebral micr...
Guardado en:
Autores principales: | Bhadra S. Kumar, Nagavarshini Mayakkannan, N. Sowmya Manojna, V. Srinivasa Chakravarthy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/134878b503b44fba9d6e4e37b5e40e55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Training Optimization for Artificial Neural Networks
por: Primitivo Toribio Luna, et al.
Publicado: (2010) -
Neural networks for increased accuracy of allergenic pollen monitoring
por: Marcel Polling, et al.
Publicado: (2021) -
In vivo imaging of phosphocreatine with artificial neural networks
por: Lin Chen, et al.
Publicado: (2020) -
Artificial astrocytes improve neural network performance.
por: Ana B Porto-Pazos, et al.
Publicado: (2011) -
The structure dilemma in biological and artificial neural networks
por: Thomas Pircher, et al.
Publicado: (2021)