Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.

Several antibiotics demonstrate both antibacterial and anti-inflammatory/immunomodulatory activities and are used to treat inflammatory pulmonary disorders. Lefamulin is a pleuromutilin antibiotic approved to treat community-acquired bacterial pneumonia (CABP). This study evaluated lefamulin anti-in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael Hafner, Susanne Paukner, Wolfgang W Wicha, Boška Hrvačić, Matea Cedilak, Ivan Faraho, Steven P Gelone
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/136f83670bc14055ac4e6c2288b6710a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:136f83670bc14055ac4e6c2288b6710a
record_format dspace
spelling oai:doaj.org-article:136f83670bc14055ac4e6c2288b6710a2021-12-02T20:06:08ZAnti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.1932-620310.1371/journal.pone.0237659https://doaj.org/article/136f83670bc14055ac4e6c2288b6710a2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0237659https://doaj.org/toc/1932-6203Several antibiotics demonstrate both antibacterial and anti-inflammatory/immunomodulatory activities and are used to treat inflammatory pulmonary disorders. Lefamulin is a pleuromutilin antibiotic approved to treat community-acquired bacterial pneumonia (CABP). This study evaluated lefamulin anti-inflammatory effects in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia model in which mouse airways were challenged with intranasal lipopolysaccharide. Lefamulin and comparators azithromycin and dexamethasone were administered 30min before lipopolysaccharide challenge; neutrophil infiltration into BALF and inflammatory mediator induction in lung homogenates were measured 4h postchallenge. Single subcutaneous lefamulin doses (10‒140mg/kg) resulted in dose-dependent reductions of BALF neutrophil cell counts, comparable to or more potent than subcutaneous azithromycin (10‒100mg/kg) and oral/intraperitoneal dexamethasone (0.5/1mg/kg). Lipopolysaccharide-induced pro-inflammatory cytokine (TNF-α, IL-6, IL-1β, and GM-CSF), chemokine (CXCL-1, CXCL-2, and CCL-2), and MMP-9 levels were significantly and dose-dependently reduced in mouse lung tissue with lefamulin; effects were comparable to or more potent than with dexamethasone or azithromycin. Pharmacokinetic analyses confirmed exposure-equivalence of 30mg/kg subcutaneous lefamulin in mice to a single clinical lefamulin dose to treat CABP in humans (150mg intravenous/600mg oral). In vitro, neither lefamulin nor azithromycin had any relevant influence on lipopolysaccharide-induced cytokine/chemokine levels in J774.2 mouse macrophage or human peripheral blood mononuclear cell supernatants, nor were any effects observed on IL-8‒induced human neutrophil chemotaxis. These in vitro results suggest that impediment of neutrophil infiltration by lefamulin in vivo may not occur through direct interaction with macrophages or neutrophilic chemotaxis. This is the first study to demonstrate inhibition of neutrophilic lung infiltration and reduction of pro-inflammatory cytokine/chemokine concentrations by clinically relevant lefamulin doses. This anti-inflammatory activity may be beneficial in patients with acute respiratory distress syndrome, cystic fibrosis, or severe inflammation-mediated lung injury, similar to glucocorticoid (eg, dexamethasone) activity. Future lefamulin anti-inflammatory/immunomodulatory activity studies are warranted to further elucidate mechanism of action and evaluate clinical implications.Michael HafnerSusanne PauknerWolfgang W WichaBoška HrvačićMatea CedilakIvan FarahoSteven P GelonePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 9, p e0237659 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Michael Hafner
Susanne Paukner
Wolfgang W Wicha
Boška Hrvačić
Matea Cedilak
Ivan Faraho
Steven P Gelone
Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.
description Several antibiotics demonstrate both antibacterial and anti-inflammatory/immunomodulatory activities and are used to treat inflammatory pulmonary disorders. Lefamulin is a pleuromutilin antibiotic approved to treat community-acquired bacterial pneumonia (CABP). This study evaluated lefamulin anti-inflammatory effects in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia model in which mouse airways were challenged with intranasal lipopolysaccharide. Lefamulin and comparators azithromycin and dexamethasone were administered 30min before lipopolysaccharide challenge; neutrophil infiltration into BALF and inflammatory mediator induction in lung homogenates were measured 4h postchallenge. Single subcutaneous lefamulin doses (10‒140mg/kg) resulted in dose-dependent reductions of BALF neutrophil cell counts, comparable to or more potent than subcutaneous azithromycin (10‒100mg/kg) and oral/intraperitoneal dexamethasone (0.5/1mg/kg). Lipopolysaccharide-induced pro-inflammatory cytokine (TNF-α, IL-6, IL-1β, and GM-CSF), chemokine (CXCL-1, CXCL-2, and CCL-2), and MMP-9 levels were significantly and dose-dependently reduced in mouse lung tissue with lefamulin; effects were comparable to or more potent than with dexamethasone or azithromycin. Pharmacokinetic analyses confirmed exposure-equivalence of 30mg/kg subcutaneous lefamulin in mice to a single clinical lefamulin dose to treat CABP in humans (150mg intravenous/600mg oral). In vitro, neither lefamulin nor azithromycin had any relevant influence on lipopolysaccharide-induced cytokine/chemokine levels in J774.2 mouse macrophage or human peripheral blood mononuclear cell supernatants, nor were any effects observed on IL-8‒induced human neutrophil chemotaxis. These in vitro results suggest that impediment of neutrophil infiltration by lefamulin in vivo may not occur through direct interaction with macrophages or neutrophilic chemotaxis. This is the first study to demonstrate inhibition of neutrophilic lung infiltration and reduction of pro-inflammatory cytokine/chemokine concentrations by clinically relevant lefamulin doses. This anti-inflammatory activity may be beneficial in patients with acute respiratory distress syndrome, cystic fibrosis, or severe inflammation-mediated lung injury, similar to glucocorticoid (eg, dexamethasone) activity. Future lefamulin anti-inflammatory/immunomodulatory activity studies are warranted to further elucidate mechanism of action and evaluate clinical implications.
format article
author Michael Hafner
Susanne Paukner
Wolfgang W Wicha
Boška Hrvačić
Matea Cedilak
Ivan Faraho
Steven P Gelone
author_facet Michael Hafner
Susanne Paukner
Wolfgang W Wicha
Boška Hrvačić
Matea Cedilak
Ivan Faraho
Steven P Gelone
author_sort Michael Hafner
title Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.
title_short Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.
title_full Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.
title_fullStr Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.
title_full_unstemmed Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.
title_sort anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/136f83670bc14055ac4e6c2288b6710a
work_keys_str_mv AT michaelhafner antiinflammatoryactivityoflefamulinversusazithromycinanddexamethasoneinvivoandinvitroinalipopolysaccharideinducedlungneutrophiliamousemodel
AT susannepaukner antiinflammatoryactivityoflefamulinversusazithromycinanddexamethasoneinvivoandinvitroinalipopolysaccharideinducedlungneutrophiliamousemodel
AT wolfgangwwicha antiinflammatoryactivityoflefamulinversusazithromycinanddexamethasoneinvivoandinvitroinalipopolysaccharideinducedlungneutrophiliamousemodel
AT boskahrvacic antiinflammatoryactivityoflefamulinversusazithromycinanddexamethasoneinvivoandinvitroinalipopolysaccharideinducedlungneutrophiliamousemodel
AT mateacedilak antiinflammatoryactivityoflefamulinversusazithromycinanddexamethasoneinvivoandinvitroinalipopolysaccharideinducedlungneutrophiliamousemodel
AT ivanfaraho antiinflammatoryactivityoflefamulinversusazithromycinanddexamethasoneinvivoandinvitroinalipopolysaccharideinducedlungneutrophiliamousemodel
AT stevenpgelone antiinflammatoryactivityoflefamulinversusazithromycinanddexamethasoneinvivoandinvitroinalipopolysaccharideinducedlungneutrophiliamousemodel
_version_ 1718375405716504576