Understanding the diversity of the metal-organic framework ecosystem
At present there are databases with over 500,000 predicted or synthesized MOF structures, yet a method to establish whether a new material adds new information does not exist. Here the authors propose a machine-learning based approach to quantify the structural and chemical diversity in common MOF d...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1372a595c9304ad5a57637579b729d38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1372a595c9304ad5a57637579b729d38 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1372a595c9304ad5a57637579b729d382021-12-02T19:06:44ZUnderstanding the diversity of the metal-organic framework ecosystem10.1038/s41467-020-17755-82041-1723https://doaj.org/article/1372a595c9304ad5a57637579b729d382020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17755-8https://doaj.org/toc/2041-1723At present there are databases with over 500,000 predicted or synthesized MOF structures, yet a method to establish whether a new material adds new information does not exist. Here the authors propose a machine-learning based approach to quantify the structural and chemical diversity in common MOF databases.Seyed Mohamad MoosaviAditya NandyKevin Maik JablonkaDaniele OngariJon Paul JanetPeter G. BoydYongjin LeeBerend SmitHeather J. KulikNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Seyed Mohamad Moosavi Aditya Nandy Kevin Maik Jablonka Daniele Ongari Jon Paul Janet Peter G. Boyd Yongjin Lee Berend Smit Heather J. Kulik Understanding the diversity of the metal-organic framework ecosystem |
description |
At present there are databases with over 500,000 predicted or synthesized MOF structures, yet a method to establish whether a new material adds new information does not exist. Here the authors propose a machine-learning based approach to quantify the structural and chemical diversity in common MOF databases. |
format |
article |
author |
Seyed Mohamad Moosavi Aditya Nandy Kevin Maik Jablonka Daniele Ongari Jon Paul Janet Peter G. Boyd Yongjin Lee Berend Smit Heather J. Kulik |
author_facet |
Seyed Mohamad Moosavi Aditya Nandy Kevin Maik Jablonka Daniele Ongari Jon Paul Janet Peter G. Boyd Yongjin Lee Berend Smit Heather J. Kulik |
author_sort |
Seyed Mohamad Moosavi |
title |
Understanding the diversity of the metal-organic framework ecosystem |
title_short |
Understanding the diversity of the metal-organic framework ecosystem |
title_full |
Understanding the diversity of the metal-organic framework ecosystem |
title_fullStr |
Understanding the diversity of the metal-organic framework ecosystem |
title_full_unstemmed |
Understanding the diversity of the metal-organic framework ecosystem |
title_sort |
understanding the diversity of the metal-organic framework ecosystem |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/1372a595c9304ad5a57637579b729d38 |
work_keys_str_mv |
AT seyedmohamadmoosavi understandingthediversityofthemetalorganicframeworkecosystem AT adityanandy understandingthediversityofthemetalorganicframeworkecosystem AT kevinmaikjablonka understandingthediversityofthemetalorganicframeworkecosystem AT danieleongari understandingthediversityofthemetalorganicframeworkecosystem AT jonpauljanet understandingthediversityofthemetalorganicframeworkecosystem AT petergboyd understandingthediversityofthemetalorganicframeworkecosystem AT yongjinlee understandingthediversityofthemetalorganicframeworkecosystem AT berendsmit understandingthediversityofthemetalorganicframeworkecosystem AT heatherjkulik understandingthediversityofthemetalorganicframeworkecosystem |
_version_ |
1718377132428623872 |