Understanding the diversity of the metal-organic framework ecosystem

At present there are databases with over 500,000 predicted or synthesized MOF structures, yet a method to establish whether a new material adds new information does not exist. Here the authors propose a machine-learning based approach to quantify the structural and chemical diversity in common MOF d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Seyed Mohamad Moosavi, Aditya Nandy, Kevin Maik Jablonka, Daniele Ongari, Jon Paul Janet, Peter G. Boyd, Yongjin Lee, Berend Smit, Heather J. Kulik
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/1372a595c9304ad5a57637579b729d38
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1372a595c9304ad5a57637579b729d38
record_format dspace
spelling oai:doaj.org-article:1372a595c9304ad5a57637579b729d382021-12-02T19:06:44ZUnderstanding the diversity of the metal-organic framework ecosystem10.1038/s41467-020-17755-82041-1723https://doaj.org/article/1372a595c9304ad5a57637579b729d382020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17755-8https://doaj.org/toc/2041-1723At present there are databases with over 500,000 predicted or synthesized MOF structures, yet a method to establish whether a new material adds new information does not exist. Here the authors propose a machine-learning based approach to quantify the structural and chemical diversity in common MOF databases.Seyed Mohamad MoosaviAditya NandyKevin Maik JablonkaDaniele OngariJon Paul JanetPeter G. BoydYongjin LeeBerend SmitHeather J. KulikNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Seyed Mohamad Moosavi
Aditya Nandy
Kevin Maik Jablonka
Daniele Ongari
Jon Paul Janet
Peter G. Boyd
Yongjin Lee
Berend Smit
Heather J. Kulik
Understanding the diversity of the metal-organic framework ecosystem
description At present there are databases with over 500,000 predicted or synthesized MOF structures, yet a method to establish whether a new material adds new information does not exist. Here the authors propose a machine-learning based approach to quantify the structural and chemical diversity in common MOF databases.
format article
author Seyed Mohamad Moosavi
Aditya Nandy
Kevin Maik Jablonka
Daniele Ongari
Jon Paul Janet
Peter G. Boyd
Yongjin Lee
Berend Smit
Heather J. Kulik
author_facet Seyed Mohamad Moosavi
Aditya Nandy
Kevin Maik Jablonka
Daniele Ongari
Jon Paul Janet
Peter G. Boyd
Yongjin Lee
Berend Smit
Heather J. Kulik
author_sort Seyed Mohamad Moosavi
title Understanding the diversity of the metal-organic framework ecosystem
title_short Understanding the diversity of the metal-organic framework ecosystem
title_full Understanding the diversity of the metal-organic framework ecosystem
title_fullStr Understanding the diversity of the metal-organic framework ecosystem
title_full_unstemmed Understanding the diversity of the metal-organic framework ecosystem
title_sort understanding the diversity of the metal-organic framework ecosystem
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/1372a595c9304ad5a57637579b729d38
work_keys_str_mv AT seyedmohamadmoosavi understandingthediversityofthemetalorganicframeworkecosystem
AT adityanandy understandingthediversityofthemetalorganicframeworkecosystem
AT kevinmaikjablonka understandingthediversityofthemetalorganicframeworkecosystem
AT danieleongari understandingthediversityofthemetalorganicframeworkecosystem
AT jonpauljanet understandingthediversityofthemetalorganicframeworkecosystem
AT petergboyd understandingthediversityofthemetalorganicframeworkecosystem
AT yongjinlee understandingthediversityofthemetalorganicframeworkecosystem
AT berendsmit understandingthediversityofthemetalorganicframeworkecosystem
AT heatherjkulik understandingthediversityofthemetalorganicframeworkecosystem
_version_ 1718377132428623872