Understanding the diversity of the metal-organic framework ecosystem
At present there are databases with over 500,000 predicted or synthesized MOF structures, yet a method to establish whether a new material adds new information does not exist. Here the authors propose a machine-learning based approach to quantify the structural and chemical diversity in common MOF d...
Guardado en:
Autores principales: | Seyed Mohamad Moosavi, Aditya Nandy, Kevin Maik Jablonka, Daniele Ongari, Jon Paul Janet, Peter G. Boyd, Yongjin Lee, Berend Smit, Heather J. Kulik |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1372a595c9304ad5a57637579b729d38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Capturing chemical intuition in synthesis of metal-organic frameworks
por: Seyed Mohamad Moosavi, et al.
Publicado: (2019) -
Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation
por: Gerald Bauer, et al.
Publicado: (2020) -
Bias free multiobjective active learning for materials design and discovery
por: Kevin Maik Jablonka, et al.
Publicado: (2021) -
Quantifying similarity of pore-geometry in nanoporous materials
por: Yongjin Lee, et al.
Publicado: (2017) -
Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor
por: Samantha L. Anderson, et al.
Publicado: (2019)