“Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
Abstract Benchmark datasets have a powerful normative influence: by determining how the real world is represented in data, they define which problems will first be solved by algorithms built using the datasets and, by extension, who these algorithms will work for. It is desirable for these datasets...
Guardado en:
Autores principales: | Trishan Panch, Tom J. Pollard, Heather Mattie, Emily Lindemer, Pearse A. Keane, Leo Anthony Celi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/137ec39e5c7443ce9fa5c7d8216b54ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
What do medical students actually need to know about artificial intelligence?
por: Liam G. McCoy, et al.
Publicado: (2020) -
Privacy protections to encourage use of health-relevant digital data in a learning health system
por: Deven McGraw, et al.
Publicado: (2021) -
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
por: Mike D. Rinderknecht, et al.
Publicado: (2021) -
Patient-specific COVID-19 resource utilization prediction using fusion AI model
por: Amara Tariq, et al.
Publicado: (2021)