A novel mineralocorticoid receptor antagonist, 7,3',4'-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids

Abstract Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hanil Lee, Eun-Jeong Choi, Eun Jung Kim, Eui Dong Son, Hyoung-June Kim, Won-Seok Park, Young-Gyu Kang, Kyong-Oh Shin, Kyungho Park, Jin-Chul Kim, Su-Nam Kim, Eung Ho Choi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/13816f2d1f114bb5aea0abb848a7f618
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous adverse events. We examined whether MR antagonists can ameliorate GC-mediated skin barrier dysfunction in NHEKs, reconstructed human epidermis (RHE), and subjects under psychological stress (PS). In a preliminary clinical investigation, topical MR antagonists improved skin barrier function in topical GC-treated subjects. In NHEKs, cortisol induced nuclear translocation of GR and MR, and GR and MR antagonists inhibited cortisol-induced reductions of keratinocyte differentiation. We identified 7,3’,4’-trihydroxyisoflavone (7,3’,4’-THIF) as a novel compound that inhibits MR transcriptional activity by screening 30 cosmetic compounds. 7,3’,4’-THIF ameliorated the cortisol effect which decreases keratinocyte differentiation in NHEKs and RHE. In a clinical study on PS subjects, 7,3',4'-THIF (0.1%)-containing cream improved skin barrier function, including skin surface pH, barrier recovery rate, and stratum corneum lipids. In conclusion, skin barrier dysfunction owing to excess GC is mediated by MR and GR; thus, it could be prevented by treatment with MR antagonists. Therefore, topical MR antagonists are a promising therapeutic option for skin barrier dysfunction after topical GC treatment or PS.