A convolutional neural network segments yeast microscopy images with high accuracy

Current cell segmentation methods for Saccharomyces cerevisiae face challenges under a variety of standard experimental and imaging conditions. Here the authors develop a convolutional neural network for accurate, label-free cell segmentation.

Guardado en:
Detalles Bibliográficos
Autores principales: Nicola Dietler, Matthias Minder, Vojislav Gligorovski, Augoustina Maria Economou, Denis Alain Henri Lucien Joly, Ahmad Sadeghi, Chun Hei Michael Chan, Mateusz Koziński, Martin Weigert, Anne-Florence Bitbol, Sahand Jamal Rahi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/1386b197c37e4a83a88513c47ac98ec5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1386b197c37e4a83a88513c47ac98ec5
record_format dspace
spelling oai:doaj.org-article:1386b197c37e4a83a88513c47ac98ec52021-12-02T14:40:42ZA convolutional neural network segments yeast microscopy images with high accuracy10.1038/s41467-020-19557-42041-1723https://doaj.org/article/1386b197c37e4a83a88513c47ac98ec52020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19557-4https://doaj.org/toc/2041-1723Current cell segmentation methods for Saccharomyces cerevisiae face challenges under a variety of standard experimental and imaging conditions. Here the authors develop a convolutional neural network for accurate, label-free cell segmentation.Nicola DietlerMatthias MinderVojislav GligorovskiAugoustina Maria EconomouDenis Alain Henri Lucien JolyAhmad SadeghiChun Hei Michael ChanMateusz KozińskiMartin WeigertAnne-Florence BitbolSahand Jamal RahiNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Nicola Dietler
Matthias Minder
Vojislav Gligorovski
Augoustina Maria Economou
Denis Alain Henri Lucien Joly
Ahmad Sadeghi
Chun Hei Michael Chan
Mateusz Koziński
Martin Weigert
Anne-Florence Bitbol
Sahand Jamal Rahi
A convolutional neural network segments yeast microscopy images with high accuracy
description Current cell segmentation methods for Saccharomyces cerevisiae face challenges under a variety of standard experimental and imaging conditions. Here the authors develop a convolutional neural network for accurate, label-free cell segmentation.
format article
author Nicola Dietler
Matthias Minder
Vojislav Gligorovski
Augoustina Maria Economou
Denis Alain Henri Lucien Joly
Ahmad Sadeghi
Chun Hei Michael Chan
Mateusz Koziński
Martin Weigert
Anne-Florence Bitbol
Sahand Jamal Rahi
author_facet Nicola Dietler
Matthias Minder
Vojislav Gligorovski
Augoustina Maria Economou
Denis Alain Henri Lucien Joly
Ahmad Sadeghi
Chun Hei Michael Chan
Mateusz Koziński
Martin Weigert
Anne-Florence Bitbol
Sahand Jamal Rahi
author_sort Nicola Dietler
title A convolutional neural network segments yeast microscopy images with high accuracy
title_short A convolutional neural network segments yeast microscopy images with high accuracy
title_full A convolutional neural network segments yeast microscopy images with high accuracy
title_fullStr A convolutional neural network segments yeast microscopy images with high accuracy
title_full_unstemmed A convolutional neural network segments yeast microscopy images with high accuracy
title_sort convolutional neural network segments yeast microscopy images with high accuracy
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/1386b197c37e4a83a88513c47ac98ec5
work_keys_str_mv AT nicoladietler aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT matthiasminder aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT vojislavgligorovski aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT augoustinamariaeconomou aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT denisalainhenrilucienjoly aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT ahmadsadeghi aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT chunheimichaelchan aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT mateuszkozinski aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT martinweigert aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT anneflorencebitbol aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT sahandjamalrahi aconvolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT nicoladietler convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT matthiasminder convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT vojislavgligorovski convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT augoustinamariaeconomou convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT denisalainhenrilucienjoly convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT ahmadsadeghi convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT chunheimichaelchan convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT mateuszkozinski convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT martinweigert convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT anneflorencebitbol convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
AT sahandjamalrahi convolutionalneuralnetworksegmentsyeastmicroscopyimageswithhighaccuracy
_version_ 1718390156532121600