A convolutional neural network segments yeast microscopy images with high accuracy
Current cell segmentation methods for Saccharomyces cerevisiae face challenges under a variety of standard experimental and imaging conditions. Here the authors develop a convolutional neural network for accurate, label-free cell segmentation.
Guardado en:
Autores principales: | Nicola Dietler, Matthias Minder, Vojislav Gligorovski, Augoustina Maria Economou, Denis Alain Henri Lucien Joly, Ahmad Sadeghi, Chun Hei Michael Chan, Mateusz Koziński, Martin Weigert, Anne-Florence Bitbol, Sahand Jamal Rahi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1386b197c37e4a83a88513c47ac98ec5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
Ejemplares similares
-
Combining Accuracy and Plasticity in Convolutional Neural Networks Based on Resistive Memory Arrays for Autonomous Learning
por: Stefano Bianchi, et al.
Publicado: (2021) -
Automatic recognition of pulse repetition interval modulation using temporal convolutional network
por: Abolfazl Dadgarnia, et al.
Publicado: (2021) -
Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
por: Yang Li, et al.
Publicado: (2021) -
Humanizing the yeast origin recognition complex
por: Clare S. K. Lee, et al.
Publicado: (2021) -
DIAGNOSTIC ACCURACY OF GENEXPERT ASSAY AND COMPARISON WITH SMEAR AFB ON BRONCHIAL WASHINGS IN SPUTUM NEGATIVE SUSPECTED PULMONARY TUBERCULOSIS
por: Mahmood Iqbal Malik, et al.
Publicado: (2019)