Xinshuitong Capsule extract attenuates doxorubicin-induced myocardial edema via regulation of cardiac aquaporins in the chronic heart failure rats

Doxorubicin (Dox), an effective antineoplastic drug, was limited use for cardiotoxicity. Xinshuitong Capsule (XST), a patented herbal formula, showed desirable beneficial effects in the treatment of chronic heart failure (CHF) patients. However, the drug on Dox-induced cardiotoxicity remains unclear...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chunjiang Tan, Jianwei Zeng, Guangwen Wu, Liangpu Zheng, Meiya Huang, Xiansheng Huang
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/138cc05cde814a89943e0e4d31713faa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Doxorubicin (Dox), an effective antineoplastic drug, was limited use for cardiotoxicity. Xinshuitong Capsule (XST), a patented herbal formula, showed desirable beneficial effects in the treatment of chronic heart failure (CHF) patients. However, the drug on Dox-induced cardiotoxicity remains unclear. Ninety male Sprague-Dawley rats were randomized into two groups: 15 rats were selected as the normal group and 75 rats were injected intraperitoneally with Dox to establish CHF rat models, the success ones were randomly divided into five groups: low XST (LXST), medium XST (MXST) or high XST (HXST) (4.9, 9.8, or 19.6 g/kg d) administrated intragastrically twice a day for 4 weeks, with the captopril-treated group and the model group as comparison. The model group showed the cardiac functions generally impaired, and CHF mortality rate higher (47%) than those in the XST-treated groups (averaged 24%, P < 0.05). Compared with XST-treated groups, myocardial remodeling, inflammation and desarcomerization, and higher water content more severe in the cardiac tissue in the model group (P < 0.05), which was associated with higher expressions of mRNA or protein levels of AQP1, 4 and 7. Dox-impaired cardiac functions, cardiac remodeling and myocardial edema could be dose-dependently reverted by XST treatment. XST could inhibit AQP1, 4 and 7 at mRNA levels or at protein levels, which was associated with the attenuation of myocardial edema and cardiac remodeling, decreasing the ventricular stiffness and improving the cardiac functions and rats’ survival. AQPs is involved in cardiac edema composed one of the mechanisms of Dox-induced cardiotoxicity, XSTvia inhibition of AQPs relieved the Dox-induced side effects.