Instantaneous generation of protein hydration properties from static structures

Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmadreza Ghanbarpour, Amr H. Mahmoud, Markus A. Lill
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/138db84a81034657b88058276cc0d0a7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:138db84a81034657b88058276cc0d0a7
record_format dspace
spelling oai:doaj.org-article:138db84a81034657b88058276cc0d0a72021-12-02T11:43:48ZInstantaneous generation of protein hydration properties from static structures10.1038/s42004-020-00435-52399-3669https://doaj.org/article/138db84a81034657b88058276cc0d0a72020-12-01T00:00:00Zhttps://doi.org/10.1038/s42004-020-00435-5https://doaj.org/toc/2399-3669Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information on the static protein structure.Ahmadreza GhanbarpourAmr H. MahmoudMarkus A. LillNature PortfolioarticleChemistryQD1-999ENCommunications Chemistry, Vol 3, Iss 1, Pp 1-19 (2020)
institution DOAJ
collection DOAJ
language EN
topic Chemistry
QD1-999
spellingShingle Chemistry
QD1-999
Ahmadreza Ghanbarpour
Amr H. Mahmoud
Markus A. Lill
Instantaneous generation of protein hydration properties from static structures
description Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information on the static protein structure.
format article
author Ahmadreza Ghanbarpour
Amr H. Mahmoud
Markus A. Lill
author_facet Ahmadreza Ghanbarpour
Amr H. Mahmoud
Markus A. Lill
author_sort Ahmadreza Ghanbarpour
title Instantaneous generation of protein hydration properties from static structures
title_short Instantaneous generation of protein hydration properties from static structures
title_full Instantaneous generation of protein hydration properties from static structures
title_fullStr Instantaneous generation of protein hydration properties from static structures
title_full_unstemmed Instantaneous generation of protein hydration properties from static structures
title_sort instantaneous generation of protein hydration properties from static structures
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/138db84a81034657b88058276cc0d0a7
work_keys_str_mv AT ahmadrezaghanbarpour instantaneousgenerationofproteinhydrationpropertiesfromstaticstructures
AT amrhmahmoud instantaneousgenerationofproteinhydrationpropertiesfromstaticstructures
AT markusalill instantaneousgenerationofproteinhydrationpropertiesfromstaticstructures
_version_ 1718395326911479808