Instantaneous generation of protein hydration properties from static structures
Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/138db84a81034657b88058276cc0d0a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:138db84a81034657b88058276cc0d0a7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:138db84a81034657b88058276cc0d0a72021-12-02T11:43:48ZInstantaneous generation of protein hydration properties from static structures10.1038/s42004-020-00435-52399-3669https://doaj.org/article/138db84a81034657b88058276cc0d0a72020-12-01T00:00:00Zhttps://doi.org/10.1038/s42004-020-00435-5https://doaj.org/toc/2399-3669Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information on the static protein structure.Ahmadreza GhanbarpourAmr H. MahmoudMarkus A. LillNature PortfolioarticleChemistryQD1-999ENCommunications Chemistry, Vol 3, Iss 1, Pp 1-19 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Chemistry QD1-999 |
spellingShingle |
Chemistry QD1-999 Ahmadreza Ghanbarpour Amr H. Mahmoud Markus A. Lill Instantaneous generation of protein hydration properties from static structures |
description |
Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information on the static protein structure. |
format |
article |
author |
Ahmadreza Ghanbarpour Amr H. Mahmoud Markus A. Lill |
author_facet |
Ahmadreza Ghanbarpour Amr H. Mahmoud Markus A. Lill |
author_sort |
Ahmadreza Ghanbarpour |
title |
Instantaneous generation of protein hydration properties from static structures |
title_short |
Instantaneous generation of protein hydration properties from static structures |
title_full |
Instantaneous generation of protein hydration properties from static structures |
title_fullStr |
Instantaneous generation of protein hydration properties from static structures |
title_full_unstemmed |
Instantaneous generation of protein hydration properties from static structures |
title_sort |
instantaneous generation of protein hydration properties from static structures |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/138db84a81034657b88058276cc0d0a7 |
work_keys_str_mv |
AT ahmadrezaghanbarpour instantaneousgenerationofproteinhydrationpropertiesfromstaticstructures AT amrhmahmoud instantaneousgenerationofproteinhydrationpropertiesfromstaticstructures AT markusalill instantaneousgenerationofproteinhydrationpropertiesfromstaticstructures |
_version_ |
1718395326911479808 |