HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.
Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on...
Guardado en:
Autores principales: | Shibiao Wan, Man-Wai Mak, Sun-Yuan Kung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13a150305c114475bdd5ce32166cb083 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting Human Protein Subcellular Locations by Using a Combination of Network and Function Features
por: Lei Chen, et al.
Publicado: (2021) -
iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins.
por: Kuo-Chen Chou, et al.
Publicado: (2011) -
Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks.
por: Tao Huang, et al.
Publicado: (2010) -
Disparate subcellular location of putative sortase substrates in Clostridium difficile
por: Johann Peltier, et al.
Publicado: (2017) -
Using a Method and Tool for Hybrid Ontology Engineering: an Evaluation in the Flemish Research Information Space
por: Debruyne,Christophe, et al.
Publicado: (2014)